Cargando…
Using random forests for assistance in the curation of G-protein coupled receptor databases
BACKGROUND: Biology is experiencing a gradual but fast transformation from a laboratory-centred science towards a data-centred one. As such, it requires robust data engineering and the use of quantitative data analysis methods as part of database curation. This paper focuses on G protein-coupled rec...
Autores principales: | Shkurin, Aleksei, Vellido, Alfredo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568607/ https://www.ncbi.nlm.nih.gov/pubmed/28830426 http://dx.doi.org/10.1186/s12938-017-0357-4 |
Ejemplares similares
-
Using machine learning tools for protein database biocuration assistance
por: König, Caroline, et al.
Publicado: (2018) -
Label noise in subtype discrimination of class C G protein-coupled receptors: A systematic approach to the analysis of classification errors
por: König, Caroline, et al.
Publicado: (2015) -
Prediction of G Protein-Coupled Receptors with SVM-Prot Features and Random Forest
por: Liao, Zhijun, et al.
Publicado: (2016) -
GPCRdb: the G protein‐coupled receptor database – an introduction
por: Munk, C, et al.
Publicado: (2016) -
RINGdb: An integrated database for G protein-coupled receptors and regulators of G protein signaling
por: Fang, Yu-Ching, et al.
Publicado: (2006)