Cargando…

A wellness study of 108 individuals using personal, dense, dynamic data clouds

We collected personal, dense, dynamic data for 108 individuals over 9 months, including whole genome sequence; clinical tests, metabolomes, proteomes and microbiomes at three time points; and daily activity tracking. Using these data we generated a correlation network and identified communities of r...

Descripción completa

Detalles Bibliográficos
Autores principales: Price, Nathan D., Magis, Andrew T., Earls, John C., Glusman, Gustavo, Levy, Roie, Lausted, Christopher, McDonald, Daniel T., Kusebauch, Ulrike, Moss, Christopher L., Zhou, Yong, Qin, Shizhen, Moritz, Robert L., Brogaard, Kristin, Omenn, Gilbert S., Lovejoy, Jennifer C., Hood, Leroy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568837/
https://www.ncbi.nlm.nih.gov/pubmed/28714965
http://dx.doi.org/10.1038/nbt.3870
_version_ 1783258894229831680
author Price, Nathan D.
Magis, Andrew T.
Earls, John C.
Glusman, Gustavo
Levy, Roie
Lausted, Christopher
McDonald, Daniel T.
Kusebauch, Ulrike
Moss, Christopher L.
Zhou, Yong
Qin, Shizhen
Moritz, Robert L.
Brogaard, Kristin
Omenn, Gilbert S.
Lovejoy, Jennifer C.
Hood, Leroy
author_facet Price, Nathan D.
Magis, Andrew T.
Earls, John C.
Glusman, Gustavo
Levy, Roie
Lausted, Christopher
McDonald, Daniel T.
Kusebauch, Ulrike
Moss, Christopher L.
Zhou, Yong
Qin, Shizhen
Moritz, Robert L.
Brogaard, Kristin
Omenn, Gilbert S.
Lovejoy, Jennifer C.
Hood, Leroy
author_sort Price, Nathan D.
collection PubMed
description We collected personal, dense, dynamic data for 108 individuals over 9 months, including whole genome sequence; clinical tests, metabolomes, proteomes and microbiomes at three time points; and daily activity tracking. Using these data we generated a correlation network and identified communities of related analytes that were associated with physiology and disease. We demonstrate how connectivity within these communities identified known and candidate biomarkers, e.g. gamma-glutamyltyrosine was densely interconnected with clinical analytes for cardiometabolic disease. We calculated polygenic scores from GWAS for 127 traits and diseases, and identified molecular correlates of polygenic risk, e.g. genetic risk for inflammatory bowel disease was negatively correlated with plasma cystine. Finally, behavioral coaching informed by personalized data helped participants improve clinical biomarkers. Personal, dense, dynamic data clouds will improve understanding of health and disease, especially for early transition states. This approach to “scientific wellness” represents an opportunity largely missing in contemporary health care.
format Online
Article
Text
id pubmed-5568837
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-55688372018-01-17 A wellness study of 108 individuals using personal, dense, dynamic data clouds Price, Nathan D. Magis, Andrew T. Earls, John C. Glusman, Gustavo Levy, Roie Lausted, Christopher McDonald, Daniel T. Kusebauch, Ulrike Moss, Christopher L. Zhou, Yong Qin, Shizhen Moritz, Robert L. Brogaard, Kristin Omenn, Gilbert S. Lovejoy, Jennifer C. Hood, Leroy Nat Biotechnol Article We collected personal, dense, dynamic data for 108 individuals over 9 months, including whole genome sequence; clinical tests, metabolomes, proteomes and microbiomes at three time points; and daily activity tracking. Using these data we generated a correlation network and identified communities of related analytes that were associated with physiology and disease. We demonstrate how connectivity within these communities identified known and candidate biomarkers, e.g. gamma-glutamyltyrosine was densely interconnected with clinical analytes for cardiometabolic disease. We calculated polygenic scores from GWAS for 127 traits and diseases, and identified molecular correlates of polygenic risk, e.g. genetic risk for inflammatory bowel disease was negatively correlated with plasma cystine. Finally, behavioral coaching informed by personalized data helped participants improve clinical biomarkers. Personal, dense, dynamic data clouds will improve understanding of health and disease, especially for early transition states. This approach to “scientific wellness” represents an opportunity largely missing in contemporary health care. 2017-07-17 2017-08 /pmc/articles/PMC5568837/ /pubmed/28714965 http://dx.doi.org/10.1038/nbt.3870 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Price, Nathan D.
Magis, Andrew T.
Earls, John C.
Glusman, Gustavo
Levy, Roie
Lausted, Christopher
McDonald, Daniel T.
Kusebauch, Ulrike
Moss, Christopher L.
Zhou, Yong
Qin, Shizhen
Moritz, Robert L.
Brogaard, Kristin
Omenn, Gilbert S.
Lovejoy, Jennifer C.
Hood, Leroy
A wellness study of 108 individuals using personal, dense, dynamic data clouds
title A wellness study of 108 individuals using personal, dense, dynamic data clouds
title_full A wellness study of 108 individuals using personal, dense, dynamic data clouds
title_fullStr A wellness study of 108 individuals using personal, dense, dynamic data clouds
title_full_unstemmed A wellness study of 108 individuals using personal, dense, dynamic data clouds
title_short A wellness study of 108 individuals using personal, dense, dynamic data clouds
title_sort wellness study of 108 individuals using personal, dense, dynamic data clouds
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568837/
https://www.ncbi.nlm.nih.gov/pubmed/28714965
http://dx.doi.org/10.1038/nbt.3870
work_keys_str_mv AT pricenathand awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT magisandrewt awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT earlsjohnc awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT glusmangustavo awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT levyroie awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT laustedchristopher awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT mcdonalddanielt awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT kusebauchulrike awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT mosschristopherl awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT zhouyong awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT qinshizhen awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT moritzrobertl awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT brogaardkristin awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT omenngilberts awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT lovejoyjenniferc awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT hoodleroy awellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT pricenathand wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT magisandrewt wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT earlsjohnc wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT glusmangustavo wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT levyroie wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT laustedchristopher wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT mcdonalddanielt wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT kusebauchulrike wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT mosschristopherl wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT zhouyong wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT qinshizhen wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT moritzrobertl wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT brogaardkristin wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT omenngilberts wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT lovejoyjenniferc wellnessstudyof108individualsusingpersonaldensedynamicdataclouds
AT hoodleroy wellnessstudyof108individualsusingpersonaldensedynamicdataclouds