Cargando…
Naming CRISPR alleles: endonuclease-mediated mutation nomenclature across species
The widespread use of CRISPR/Cas and other targeted endonuclease technologies in many species has led to an explosion in the generation of new mutations and alleles. The ability to generate many different mutations from the same target sequence either by homology-directed repair with a donor sequenc...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5569137/ https://www.ncbi.nlm.nih.gov/pubmed/28589392 http://dx.doi.org/10.1007/s00335-017-9698-3 |
Sumario: | The widespread use of CRISPR/Cas and other targeted endonuclease technologies in many species has led to an explosion in the generation of new mutations and alleles. The ability to generate many different mutations from the same target sequence either by homology-directed repair with a donor sequence or non-homologous end joining-induced insertions and deletions necessitates a means for representing these mutations in literature and databases. Standardized nomenclature can be used to generate unambiguous, concise, and specific symbols to represent mutations and alleles. The research communities of a variety of species using CRISPR/Cas and other endonuclease-mediated mutation technologies have developed different approaches to naming and identifying such alleles and mutations. While some organism-specific research communities have developed allele nomenclature that incorporates the method of generation within the official allele or mutant symbol, others use metadata tags that include method of generation or mutagen. Organism-specific research community databases together with organism-specific nomenclature committees are leading the way in providing standardized nomenclature and metadata to facilitate the integration of data from alleles and mutations generated using CRISPR/Cas and other targeted endonucleases. |
---|