Cargando…
Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images
Lung cancer is the most common cancer that cannot be ignored and cause death with late health care. Currently, CT can be used to help doctors detect the lung cancer in the early stages. In many cases, the diagnosis of identifying the lung cancer depends on the experience of doctors, which may ignore...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5569872/ https://www.ncbi.nlm.nih.gov/pubmed/29065651 http://dx.doi.org/10.1155/2017/8314740 |
_version_ | 1783259075662839808 |
---|---|
author | Song, QingZeng Zhao, Lei Luo, XingKe Dou, XueChen |
author_facet | Song, QingZeng Zhao, Lei Luo, XingKe Dou, XueChen |
author_sort | Song, QingZeng |
collection | PubMed |
description | Lung cancer is the most common cancer that cannot be ignored and cause death with late health care. Currently, CT can be used to help doctors detect the lung cancer in the early stages. In many cases, the diagnosis of identifying the lung cancer depends on the experience of doctors, which may ignore some patients and cause some problems. Deep learning has been proved as a popular and powerful method in many medical imaging diagnosis areas. In this paper, three types of deep neural networks (e.g., CNN, DNN, and SAE) are designed for lung cancer calcification. Those networks are applied to the CT image classification task with some modification for the benign and malignant lung nodules. Those networks were evaluated on the LIDC-IDRI database. The experimental results show that the CNN network archived the best performance with an accuracy of 84.15%, sensitivity of 83.96%, and specificity of 84.32%, which has the best result among the three networks. |
format | Online Article Text |
id | pubmed-5569872 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-55698722017-09-05 Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images Song, QingZeng Zhao, Lei Luo, XingKe Dou, XueChen J Healthc Eng Research Article Lung cancer is the most common cancer that cannot be ignored and cause death with late health care. Currently, CT can be used to help doctors detect the lung cancer in the early stages. In many cases, the diagnosis of identifying the lung cancer depends on the experience of doctors, which may ignore some patients and cause some problems. Deep learning has been proved as a popular and powerful method in many medical imaging diagnosis areas. In this paper, three types of deep neural networks (e.g., CNN, DNN, and SAE) are designed for lung cancer calcification. Those networks are applied to the CT image classification task with some modification for the benign and malignant lung nodules. Those networks were evaluated on the LIDC-IDRI database. The experimental results show that the CNN network archived the best performance with an accuracy of 84.15%, sensitivity of 83.96%, and specificity of 84.32%, which has the best result among the three networks. Hindawi 2017 2017-08-09 /pmc/articles/PMC5569872/ /pubmed/29065651 http://dx.doi.org/10.1155/2017/8314740 Text en Copyright © 2017 QingZeng Song et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Song, QingZeng Zhao, Lei Luo, XingKe Dou, XueChen Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images |
title | Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images |
title_full | Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images |
title_fullStr | Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images |
title_full_unstemmed | Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images |
title_short | Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images |
title_sort | using deep learning for classification of lung nodules on computed tomography images |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5569872/ https://www.ncbi.nlm.nih.gov/pubmed/29065651 http://dx.doi.org/10.1155/2017/8314740 |
work_keys_str_mv | AT songqingzeng usingdeeplearningforclassificationoflungnodulesoncomputedtomographyimages AT zhaolei usingdeeplearningforclassificationoflungnodulesoncomputedtomographyimages AT luoxingke usingdeeplearningforclassificationoflungnodulesoncomputedtomographyimages AT douxuechen usingdeeplearningforclassificationoflungnodulesoncomputedtomographyimages |