Cargando…
Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms
Motor imagery (MI) electroencephalograph (EEG) signals are widely applied in brain-computer interface (BCI). However, classified MI states are limited, and their classification accuracy rates are low because of the characteristics of nonlinearity and nonstationarity. This study proposes a novel MI p...
Autores principales: | Liu, Rensong, Zhang, Zhiwen, Duan, Feng, Zhou, Xin, Meng, Zixuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5569879/ https://www.ncbi.nlm.nih.gov/pubmed/28874909 http://dx.doi.org/10.1155/2017/2727856 |
Ejemplares similares
-
Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata
por: Liu, Aiming, et al.
Publicado: (2017) -
MILimbEEG: A dataset of EEG signals related to upper and lower limb execution of motor and motor imagery tasks
por: Asanza, Víctor, et al.
Publicado: (2023) -
Neural oscillations during motor imagery of complex gait: an HdEEG study
por: Putzolu, Martina, et al.
Publicado: (2022) -
Neurofeedback Training Based on Motor Imagery Strategies Increases EEG Complexity in Elderly Population
por: Marcos-Martínez, Diego, et al.
Publicado: (2021) -
A novel framework for classification of two-class motor imagery EEG signals using logistic regression classification algorithm
por: Khan, Rabia Avais, et al.
Publicado: (2023)