Cargando…

16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model

16GT is a variant caller for Illumina whole-genome and whole-exome sequencing data. It uses a new 16-genotype probabilistic model to unify single nucleotide polymorphism and insertion and deletion calling in a single variant calling algorithm. In benchmark comparisons with 5 other widely used varian...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Ruibang, Schatz, Michael C., Salzberg, Steven L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570013/
https://www.ncbi.nlm.nih.gov/pubmed/28637275
http://dx.doi.org/10.1093/gigascience/gix045
_version_ 1783259098896138240
author Luo, Ruibang
Schatz, Michael C.
Salzberg, Steven L.
author_facet Luo, Ruibang
Schatz, Michael C.
Salzberg, Steven L.
author_sort Luo, Ruibang
collection PubMed
description 16GT is a variant caller for Illumina whole-genome and whole-exome sequencing data. It uses a new 16-genotype probabilistic model to unify single nucleotide polymorphism and insertion and deletion calling in a single variant calling algorithm. In benchmark comparisons with 5 other widely used variant callers on a modern 36-core server, 16GT demonstrated improved sensitivity in calling single nucleotide polymorphisms, and it provided comparable sensitivity and accuracy for calling insertions and deletions as compared to the GATK HaplotypeCaller. 16GT is available at https://github.com/aquaskyline/16GT.
format Online
Article
Text
id pubmed-5570013
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-55700132017-08-29 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model Luo, Ruibang Schatz, Michael C. Salzberg, Steven L. Gigascience Technical Note 16GT is a variant caller for Illumina whole-genome and whole-exome sequencing data. It uses a new 16-genotype probabilistic model to unify single nucleotide polymorphism and insertion and deletion calling in a single variant calling algorithm. In benchmark comparisons with 5 other widely used variant callers on a modern 36-core server, 16GT demonstrated improved sensitivity in calling single nucleotide polymorphisms, and it provided comparable sensitivity and accuracy for calling insertions and deletions as compared to the GATK HaplotypeCaller. 16GT is available at https://github.com/aquaskyline/16GT. Oxford University Press 2017-06-15 /pmc/articles/PMC5570013/ /pubmed/28637275 http://dx.doi.org/10.1093/gigascience/gix045 Text en © The Authors 2017. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Technical Note
Luo, Ruibang
Schatz, Michael C.
Salzberg, Steven L.
16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model
title 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model
title_full 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model
title_fullStr 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model
title_full_unstemmed 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model
title_short 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model
title_sort 16gt: a fast and sensitive variant caller using a 16-genotype probabilistic model
topic Technical Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570013/
https://www.ncbi.nlm.nih.gov/pubmed/28637275
http://dx.doi.org/10.1093/gigascience/gix045
work_keys_str_mv AT luoruibang 16gtafastandsensitivevariantcallerusinga16genotypeprobabilisticmodel
AT schatzmichaelc 16gtafastandsensitivevariantcallerusinga16genotypeprobabilisticmodel
AT salzbergstevenl 16gtafastandsensitivevariantcallerusinga16genotypeprobabilisticmodel