Cargando…
16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model
16GT is a variant caller for Illumina whole-genome and whole-exome sequencing data. It uses a new 16-genotype probabilistic model to unify single nucleotide polymorphism and insertion and deletion calling in a single variant calling algorithm. In benchmark comparisons with 5 other widely used varian...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570013/ https://www.ncbi.nlm.nih.gov/pubmed/28637275 http://dx.doi.org/10.1093/gigascience/gix045 |
_version_ | 1783259098896138240 |
---|---|
author | Luo, Ruibang Schatz, Michael C. Salzberg, Steven L. |
author_facet | Luo, Ruibang Schatz, Michael C. Salzberg, Steven L. |
author_sort | Luo, Ruibang |
collection | PubMed |
description | 16GT is a variant caller for Illumina whole-genome and whole-exome sequencing data. It uses a new 16-genotype probabilistic model to unify single nucleotide polymorphism and insertion and deletion calling in a single variant calling algorithm. In benchmark comparisons with 5 other widely used variant callers on a modern 36-core server, 16GT demonstrated improved sensitivity in calling single nucleotide polymorphisms, and it provided comparable sensitivity and accuracy for calling insertions and deletions as compared to the GATK HaplotypeCaller. 16GT is available at https://github.com/aquaskyline/16GT. |
format | Online Article Text |
id | pubmed-5570013 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-55700132017-08-29 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model Luo, Ruibang Schatz, Michael C. Salzberg, Steven L. Gigascience Technical Note 16GT is a variant caller for Illumina whole-genome and whole-exome sequencing data. It uses a new 16-genotype probabilistic model to unify single nucleotide polymorphism and insertion and deletion calling in a single variant calling algorithm. In benchmark comparisons with 5 other widely used variant callers on a modern 36-core server, 16GT demonstrated improved sensitivity in calling single nucleotide polymorphisms, and it provided comparable sensitivity and accuracy for calling insertions and deletions as compared to the GATK HaplotypeCaller. 16GT is available at https://github.com/aquaskyline/16GT. Oxford University Press 2017-06-15 /pmc/articles/PMC5570013/ /pubmed/28637275 http://dx.doi.org/10.1093/gigascience/gix045 Text en © The Authors 2017. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Technical Note Luo, Ruibang Schatz, Michael C. Salzberg, Steven L. 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model |
title | 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model |
title_full | 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model |
title_fullStr | 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model |
title_full_unstemmed | 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model |
title_short | 16GT: a fast and sensitive variant caller using a 16-genotype probabilistic model |
title_sort | 16gt: a fast and sensitive variant caller using a 16-genotype probabilistic model |
topic | Technical Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570013/ https://www.ncbi.nlm.nih.gov/pubmed/28637275 http://dx.doi.org/10.1093/gigascience/gix045 |
work_keys_str_mv | AT luoruibang 16gtafastandsensitivevariantcallerusinga16genotypeprobabilisticmodel AT schatzmichaelc 16gtafastandsensitivevariantcallerusinga16genotypeprobabilisticmodel AT salzbergstevenl 16gtafastandsensitivevariantcallerusinga16genotypeprobabilisticmodel |