Cargando…

Survey of Hatching Spines of Bee Larvae Including Those of Apis mellifera (Hymenoptera: Apoidea)

This article explores the occurrence of hatching spines among bee taxa and how these structures enable a larva on hatching to extricate itself from the egg chorion. These spines, arranged in a linear sequence along the sides of the first instar just dorsal to the spiracles, have been observed and re...

Descripción completa

Detalles Bibliográficos
Autores principales: Rozen, Jerome G., Shepard Smith, Corey, Cane, James H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570067/
https://www.ncbi.nlm.nih.gov/pubmed/28973493
http://dx.doi.org/10.1093/jisesa/iex060
Descripción
Sumario:This article explores the occurrence of hatching spines among bee taxa and how these structures enable a larva on hatching to extricate itself from the egg chorion. These spines, arranged in a linear sequence along the sides of the first instar just dorsal to the spiracles, have been observed and recorded in certain groups of solitary and cleptoparasitic bee taxa. After eclosion, the first instar remains loosely covered by the egg chorion. The fact that this form of eclosion has been detected in five families (Table 1 identifies four of the families. The fifth family is the Andrenidae for which the presence of hatching spines in the Oxaeinae will soon be announced.) of bees invites speculation as to whether it is a fundamental characteristic of bees, or at least of solitary and some cleptoparasitic bees. The wide occurrence of these spines has prompted the authors to explore and discover their presence in the highly eusocial Apis mellifera L. Hatching spines were indeed discovered on first instar A. mellifera. The honey bee hatching process appears to differ in that the spines are displayed somewhat differently though still along the sides of the body, and the chorion, instead of splitting along the sides of the elongate egg, seems to quickly disintegrate from the emerging first instar in association with the nearly simultaneous removal of the serosa that covers and separates the first instar from the chorion. Unexpected observations of spherical bodies of various sizes perhaps containing dissolving enzymes being discharged from spiracular openings during hatching may shed future light on the process of how A. mellifera effects chorion removal during eclosion. Whereas hatching spines occur among many groups of bees, they appear to be entirely absent in the Nomadinae and parasitic Apinae, an indication of a different eclosion process.