Cargando…

SeMPI: a genome-based secondary metabolite prediction and identification web server

The secondary metabolism of bacteria, fungi and plants yields a vast number of bioactive substances. The constantly increasing amount of published genomic data provides the opportunity for an efficient identification of gene clusters by genome mining. Conversely, for many natural products with resol...

Descripción completa

Detalles Bibliográficos
Autores principales: Zierep, Paul F., Padilla, Natàlia, Yonchev, Dimitar G., Telukunta, Kiran K., Klementz, Dennis, Günther, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570227/
https://www.ncbi.nlm.nih.gov/pubmed/28453782
http://dx.doi.org/10.1093/nar/gkx289
_version_ 1783259140746903552
author Zierep, Paul F.
Padilla, Natàlia
Yonchev, Dimitar G.
Telukunta, Kiran K.
Klementz, Dennis
Günther, Stefan
author_facet Zierep, Paul F.
Padilla, Natàlia
Yonchev, Dimitar G.
Telukunta, Kiran K.
Klementz, Dennis
Günther, Stefan
author_sort Zierep, Paul F.
collection PubMed
description The secondary metabolism of bacteria, fungi and plants yields a vast number of bioactive substances. The constantly increasing amount of published genomic data provides the opportunity for an efficient identification of gene clusters by genome mining. Conversely, for many natural products with resolved structures, the encoding gene clusters have not been identified yet. Even though genome mining tools have become significantly more efficient in the identification of biosynthetic gene clusters, structural elucidation of the actual secondary metabolite is still challenging, especially due to as yet unpredictable post-modifications. Here, we introduce SeMPI, a web server providing a prediction and identification pipeline for natural products synthesized by polyketide synthases of type I modular. In order to limit the possible structures of PKS products and to include putative tailoring reactions, a structural comparison with annotated natural products was introduced. Furthermore, a benchmark was designed based on 40 gene clusters with annotated PKS products. The web server of the pipeline (SeMPI) is freely available at: http://www.pharmaceutical-bioinformatics.de/sempi.
format Online
Article
Text
id pubmed-5570227
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-55702272017-08-29 SeMPI: a genome-based secondary metabolite prediction and identification web server Zierep, Paul F. Padilla, Natàlia Yonchev, Dimitar G. Telukunta, Kiran K. Klementz, Dennis Günther, Stefan Nucleic Acids Res Web Server Issue The secondary metabolism of bacteria, fungi and plants yields a vast number of bioactive substances. The constantly increasing amount of published genomic data provides the opportunity for an efficient identification of gene clusters by genome mining. Conversely, for many natural products with resolved structures, the encoding gene clusters have not been identified yet. Even though genome mining tools have become significantly more efficient in the identification of biosynthetic gene clusters, structural elucidation of the actual secondary metabolite is still challenging, especially due to as yet unpredictable post-modifications. Here, we introduce SeMPI, a web server providing a prediction and identification pipeline for natural products synthesized by polyketide synthases of type I modular. In order to limit the possible structures of PKS products and to include putative tailoring reactions, a structural comparison with annotated natural products was introduced. Furthermore, a benchmark was designed based on 40 gene clusters with annotated PKS products. The web server of the pipeline (SeMPI) is freely available at: http://www.pharmaceutical-bioinformatics.de/sempi. Oxford University Press 2017-07-03 2017-04-27 /pmc/articles/PMC5570227/ /pubmed/28453782 http://dx.doi.org/10.1093/nar/gkx289 Text en © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Web Server Issue
Zierep, Paul F.
Padilla, Natàlia
Yonchev, Dimitar G.
Telukunta, Kiran K.
Klementz, Dennis
Günther, Stefan
SeMPI: a genome-based secondary metabolite prediction and identification web server
title SeMPI: a genome-based secondary metabolite prediction and identification web server
title_full SeMPI: a genome-based secondary metabolite prediction and identification web server
title_fullStr SeMPI: a genome-based secondary metabolite prediction and identification web server
title_full_unstemmed SeMPI: a genome-based secondary metabolite prediction and identification web server
title_short SeMPI: a genome-based secondary metabolite prediction and identification web server
title_sort sempi: a genome-based secondary metabolite prediction and identification web server
topic Web Server Issue
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570227/
https://www.ncbi.nlm.nih.gov/pubmed/28453782
http://dx.doi.org/10.1093/nar/gkx289
work_keys_str_mv AT ziereppaulf sempiagenomebasedsecondarymetabolitepredictionandidentificationwebserver
AT padillanatalia sempiagenomebasedsecondarymetabolitepredictionandidentificationwebserver
AT yonchevdimitarg sempiagenomebasedsecondarymetabolitepredictionandidentificationwebserver
AT telukuntakirank sempiagenomebasedsecondarymetabolitepredictionandidentificationwebserver
AT klementzdennis sempiagenomebasedsecondarymetabolitepredictionandidentificationwebserver
AT guntherstefan sempiagenomebasedsecondarymetabolitepredictionandidentificationwebserver