Cargando…
BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes
Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex task...
Autores principales: | Jespersen, Martin Closter, Peters, Bjoern, Nielsen, Morten, Marcatili, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570230/ https://www.ncbi.nlm.nih.gov/pubmed/28472356 http://dx.doi.org/10.1093/nar/gkx346 |
Ejemplares similares
-
BepiPred‐3.0: Improved B‐cell epitope prediction using protein language models
por: Clifford, Joakim Nøddeskov, et al.
Publicado: (2022) -
IEDB-AR: immune epitope database—analysis resource in 2019
por: Dhanda, Sandeep Kumar, et al.
Publicado: (2019) -
LYRA, a webserver for lymphocyte receptor structural modeling
por: Klausen, Michael Schantz, et al.
Publicado: (2015) -
SuperPred 3.0: drug classification and target prediction—a machine learning approach
por: Gallo, Kathleen, et al.
Publicado: (2022) -
SEPPA 3.0—enhanced spatial epitope prediction enabling glycoprotein antigens
por: Zhou, Chen, et al.
Publicado: (2019)