Cargando…

BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation

Metagenomics-based studies of mixed microbial communities are impacting biotechnology, life sciences and medicine. Computational binning of metagenomic data is a powerful approach for the culture-independent recovery of population-resolved genomic sequences, i.e. from individual or closely related,...

Descripción completa

Detalles Bibliográficos
Autores principales: Laczny, Cedric C., Kiefer, Christina, Galata, Valentina, Fehlmann, Tobias, Backes, Christina, Keller, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570254/
https://www.ncbi.nlm.nih.gov/pubmed/28472498
http://dx.doi.org/10.1093/nar/gkx348
_version_ 1783259143860125696
author Laczny, Cedric C.
Kiefer, Christina
Galata, Valentina
Fehlmann, Tobias
Backes, Christina
Keller, Andreas
author_facet Laczny, Cedric C.
Kiefer, Christina
Galata, Valentina
Fehlmann, Tobias
Backes, Christina
Keller, Andreas
author_sort Laczny, Cedric C.
collection PubMed
description Metagenomics-based studies of mixed microbial communities are impacting biotechnology, life sciences and medicine. Computational binning of metagenomic data is a powerful approach for the culture-independent recovery of population-resolved genomic sequences, i.e. from individual or closely related, constituent microorganisms. Existing binning solutions often require a priori characterized reference genomes and/or dedicated compute resources. Extending currently available reference-independent binning tools, we developed the BusyBee Web server for the automated deconvolution of metagenomic data into population-level genomic bins using assembled contigs (Illumina) or long reads (Pacific Biosciences, Oxford Nanopore Technologies). A reversible compression step as well as bootstrapped supervised binning enable quick turnaround times. The binning results are represented in interactive 2D scatterplots. Moreover, bin quality estimates, taxonomic annotations and annotations of antibiotic resistance genes are computed and visualized. Ground truth-based benchmarks of BusyBee Web demonstrate comparably high performance to state-of-the-art binning solutions for assembled contigs and markedly improved performance for long reads (median F1 scores: 70.02–95.21%). Furthermore, the applicability to real-world metagenomic datasets is shown. In conclusion, our reference-independent approach automatically bins assembled contigs or long reads, exhibits high sensitivity and precision, enables intuitive inspection of the results, and only requires FASTA-formatted input. The web-based application is freely accessible at: https://ccb-microbe.cs.uni-saarland.de/busybee.
format Online
Article
Text
id pubmed-5570254
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-55702542017-08-29 BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation Laczny, Cedric C. Kiefer, Christina Galata, Valentina Fehlmann, Tobias Backes, Christina Keller, Andreas Nucleic Acids Res Web Server Issue Metagenomics-based studies of mixed microbial communities are impacting biotechnology, life sciences and medicine. Computational binning of metagenomic data is a powerful approach for the culture-independent recovery of population-resolved genomic sequences, i.e. from individual or closely related, constituent microorganisms. Existing binning solutions often require a priori characterized reference genomes and/or dedicated compute resources. Extending currently available reference-independent binning tools, we developed the BusyBee Web server for the automated deconvolution of metagenomic data into population-level genomic bins using assembled contigs (Illumina) or long reads (Pacific Biosciences, Oxford Nanopore Technologies). A reversible compression step as well as bootstrapped supervised binning enable quick turnaround times. The binning results are represented in interactive 2D scatterplots. Moreover, bin quality estimates, taxonomic annotations and annotations of antibiotic resistance genes are computed and visualized. Ground truth-based benchmarks of BusyBee Web demonstrate comparably high performance to state-of-the-art binning solutions for assembled contigs and markedly improved performance for long reads (median F1 scores: 70.02–95.21%). Furthermore, the applicability to real-world metagenomic datasets is shown. In conclusion, our reference-independent approach automatically bins assembled contigs or long reads, exhibits high sensitivity and precision, enables intuitive inspection of the results, and only requires FASTA-formatted input. The web-based application is freely accessible at: https://ccb-microbe.cs.uni-saarland.de/busybee. Oxford University Press 2017-07-03 2017-05-02 /pmc/articles/PMC5570254/ /pubmed/28472498 http://dx.doi.org/10.1093/nar/gkx348 Text en © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Web Server Issue
Laczny, Cedric C.
Kiefer, Christina
Galata, Valentina
Fehlmann, Tobias
Backes, Christina
Keller, Andreas
BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation
title BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation
title_full BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation
title_fullStr BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation
title_full_unstemmed BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation
title_short BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation
title_sort busybee web: metagenomic data analysis by bootstrapped supervised binning and annotation
topic Web Server Issue
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570254/
https://www.ncbi.nlm.nih.gov/pubmed/28472498
http://dx.doi.org/10.1093/nar/gkx348
work_keys_str_mv AT lacznycedricc busybeewebmetagenomicdataanalysisbybootstrappedsupervisedbinningandannotation
AT kieferchristina busybeewebmetagenomicdataanalysisbybootstrappedsupervisedbinningandannotation
AT galatavalentina busybeewebmetagenomicdataanalysisbybootstrappedsupervisedbinningandannotation
AT fehlmanntobias busybeewebmetagenomicdataanalysisbybootstrappedsupervisedbinningandannotation
AT backeschristina busybeewebmetagenomicdataanalysisbybootstrappedsupervisedbinningandannotation
AT kellerandreas busybeewebmetagenomicdataanalysisbybootstrappedsupervisedbinningandannotation