Cargando…
Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation
Radiofrequency ablation (RFA) has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570358/ https://www.ncbi.nlm.nih.gov/pubmed/28837584 http://dx.doi.org/10.1371/journal.pone.0182457 |
_version_ | 1783259167927042048 |
---|---|
author | Liu, Yi-Da Li, Qiang Zhou, Zhuhuang Yeah, Yao-Wen Chang, Chien-Cheng Lee, Chia-Yen Tsui, Po-Hsiang |
author_facet | Liu, Yi-Da Li, Qiang Zhou, Zhuhuang Yeah, Yao-Wen Chang, Chien-Cheng Lee, Chia-Yen Tsui, Po-Hsiang |
author_sort | Liu, Yi-Da |
collection | PubMed |
description | Radiofrequency ablation (RFA) has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15) were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA. |
format | Online Article Text |
id | pubmed-5570358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55703582017-09-09 Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation Liu, Yi-Da Li, Qiang Zhou, Zhuhuang Yeah, Yao-Wen Chang, Chien-Cheng Lee, Chia-Yen Tsui, Po-Hsiang PLoS One Research Article Radiofrequency ablation (RFA) has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15) were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA. Public Library of Science 2017-08-24 /pmc/articles/PMC5570358/ /pubmed/28837584 http://dx.doi.org/10.1371/journal.pone.0182457 Text en © 2017 Liu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Liu, Yi-Da Li, Qiang Zhou, Zhuhuang Yeah, Yao-Wen Chang, Chien-Cheng Lee, Chia-Yen Tsui, Po-Hsiang Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation |
title | Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation |
title_full | Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation |
title_fullStr | Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation |
title_full_unstemmed | Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation |
title_short | Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation |
title_sort | adaptive ultrasound temperature imaging for monitoring radiofrequency ablation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570358/ https://www.ncbi.nlm.nih.gov/pubmed/28837584 http://dx.doi.org/10.1371/journal.pone.0182457 |
work_keys_str_mv | AT liuyida adaptiveultrasoundtemperatureimagingformonitoringradiofrequencyablation AT liqiang adaptiveultrasoundtemperatureimagingformonitoringradiofrequencyablation AT zhouzhuhuang adaptiveultrasoundtemperatureimagingformonitoringradiofrequencyablation AT yeahyaowen adaptiveultrasoundtemperatureimagingformonitoringradiofrequencyablation AT changchiencheng adaptiveultrasoundtemperatureimagingformonitoringradiofrequencyablation AT leechiayen adaptiveultrasoundtemperatureimagingformonitoringradiofrequencyablation AT tsuipohsiang adaptiveultrasoundtemperatureimagingformonitoringradiofrequencyablation |