Cargando…
Combining FMEA with DEMATEL models to solve production process problems
Failure mode and effects analysis (FMEA) is an analysis tool for identifying and preventing flaws or defects in products during the design and process planning stage, preventing the repeated occurrence of problems, reducing the effects of these problems, enhancing product quality and reliability, sa...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570359/ https://www.ncbi.nlm.nih.gov/pubmed/28837663 http://dx.doi.org/10.1371/journal.pone.0183634 |
Sumario: | Failure mode and effects analysis (FMEA) is an analysis tool for identifying and preventing flaws or defects in products during the design and process planning stage, preventing the repeated occurrence of problems, reducing the effects of these problems, enhancing product quality and reliability, saving costs, and improving competitiveness. However, FMEA can only analyze one influence factor according to its priority, rendering this method ineffective for systems containing multiple FMs whose effects are simultaneous or interact with one another. Accordingly, when FMEA fails to identify the influence factors and the factors being influenced, the most crucial problems may be placed in lower priority or remain unresolved. Decision-Making Trial and Evaluation Laboratory (DEMATEL) facilitates the determination of cause and effect factors; by identifying the causal factors that should be prioritized, prompt and effective solutions to core problems can be derived, thereby enhancing performance. Using the photovoltaic cell manufacturing industry in China as the research target, the present study combined FMEA with DEMATEL to amend the flaws of FMEA and enhance its effectiveness. First, FMEA was used to identify items requiring improvement. Then, DEMATEL was employed to examine the interactive effects and causal relationships of these items. Finally, the solutions to the problems were prioritized. The proposed method effectively combined the advantages of FMEA and DEMATEL to facilitate the identification of core problems and prioritization of solutions in the Chinese photovoltaic cell industry. |
---|