Cargando…
Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer's disease
Progranulin (PGRN) is a multifunctional protein that is widely expressed throughout the brain, where it has been shown to act as a critical regulator of CNS inflammation and also functions as an autocrine neuronal growth factor, important for long-term neuronal survival. PGRN has been shown to activ...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570501/ https://www.ncbi.nlm.nih.gov/pubmed/28837568 http://dx.doi.org/10.1371/journal.pone.0182896 |
_version_ | 1783259189736374272 |
---|---|
author | Van Kampen, Jackalina M. Kay, Denis G. |
author_facet | Van Kampen, Jackalina M. Kay, Denis G. |
author_sort | Van Kampen, Jackalina M. |
collection | PubMed |
description | Progranulin (PGRN) is a multifunctional protein that is widely expressed throughout the brain, where it has been shown to act as a critical regulator of CNS inflammation and also functions as an autocrine neuronal growth factor, important for long-term neuronal survival. PGRN has been shown to activate cell signaling pathways regulating excitoxicity, oxidative stress, and synaptogenesis, as well as amyloidogenesis. Together, these critical roles in the CNS suggest that PGRN has the potential to be an important therapeutic target for the treatment of various neurodegenerative disorders, particularly Alzheimer’s disease (AD). AD is the leading cause of dementia and is marked by the appearance of extracellular plaques consisting of aggregates of amyloid-β (Aβ), as well as neuroinflammation, oxidative stress, neuronal loss and synaptic atrophy. The ability of PGRN to target multiple key features of AD pathophysiology suggests that enhancing its expression may benefit this disease. Here, we describe the application of PGRN gene transfer using in vivo delivery of lentiviral expression vectors in a transgenic mouse model of AD. Viral vector delivery of the PGRN gene effectively enhanced PGRN expression in the hippocampus of Tg2576 mice. This elevated PGRN expression significantly reduced amyloid plaque burden in these mice, accompanied by reductions in markers of inflammation and synaptic atrophy. The overexpression of PGRN was also found to increase activity of neprilysin, a key amyloid beta degrading enzyme. PGRN regulation of neprilysin activity could play a major role in the observed alterations in plaque burden. Thus, PGRN may be an effective therapeutic target for the treatment of AD. |
format | Online Article Text |
id | pubmed-5570501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55705012017-09-09 Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer's disease Van Kampen, Jackalina M. Kay, Denis G. PLoS One Research Article Progranulin (PGRN) is a multifunctional protein that is widely expressed throughout the brain, where it has been shown to act as a critical regulator of CNS inflammation and also functions as an autocrine neuronal growth factor, important for long-term neuronal survival. PGRN has been shown to activate cell signaling pathways regulating excitoxicity, oxidative stress, and synaptogenesis, as well as amyloidogenesis. Together, these critical roles in the CNS suggest that PGRN has the potential to be an important therapeutic target for the treatment of various neurodegenerative disorders, particularly Alzheimer’s disease (AD). AD is the leading cause of dementia and is marked by the appearance of extracellular plaques consisting of aggregates of amyloid-β (Aβ), as well as neuroinflammation, oxidative stress, neuronal loss and synaptic atrophy. The ability of PGRN to target multiple key features of AD pathophysiology suggests that enhancing its expression may benefit this disease. Here, we describe the application of PGRN gene transfer using in vivo delivery of lentiviral expression vectors in a transgenic mouse model of AD. Viral vector delivery of the PGRN gene effectively enhanced PGRN expression in the hippocampus of Tg2576 mice. This elevated PGRN expression significantly reduced amyloid plaque burden in these mice, accompanied by reductions in markers of inflammation and synaptic atrophy. The overexpression of PGRN was also found to increase activity of neprilysin, a key amyloid beta degrading enzyme. PGRN regulation of neprilysin activity could play a major role in the observed alterations in plaque burden. Thus, PGRN may be an effective therapeutic target for the treatment of AD. Public Library of Science 2017-08-24 /pmc/articles/PMC5570501/ /pubmed/28837568 http://dx.doi.org/10.1371/journal.pone.0182896 Text en © 2017 Van Kampen, Kay http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Van Kampen, Jackalina M. Kay, Denis G. Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer's disease |
title | Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer's disease |
title_full | Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer's disease |
title_fullStr | Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer's disease |
title_full_unstemmed | Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer's disease |
title_short | Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer's disease |
title_sort | progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of alzheimer's disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570501/ https://www.ncbi.nlm.nih.gov/pubmed/28837568 http://dx.doi.org/10.1371/journal.pone.0182896 |
work_keys_str_mv | AT vankampenjackalinam progranulingenedeliveryreducesplaqueburdenandsynapticatrophyinamousemodelofalzheimersdisease AT kaydenisg progranulingenedeliveryreducesplaqueburdenandsynapticatrophyinamousemodelofalzheimersdisease |