Cargando…
Advancements in the study of miRNA regulation during the cell cycle in human pituitary adenomas
Pituitary adenomas (PAs), single-clone adenomas arising from pituitary gland cells, comprise one of the most frequent tumors found in the sella region. The prevalence of PAs is approximately 15%, third only after gliomas and meningioma among intracranial tumors. Autopsy and radiological analysis fou...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570781/ https://www.ncbi.nlm.nih.gov/pubmed/28577032 http://dx.doi.org/10.1007/s11060-017-2518-5 |
_version_ | 1783259216968941568 |
---|---|
author | Zhang, Ting Yang, Zijiang Gao, Heng |
author_facet | Zhang, Ting Yang, Zijiang Gao, Heng |
author_sort | Zhang, Ting |
collection | PubMed |
description | Pituitary adenomas (PAs), single-clone adenomas arising from pituitary gland cells, comprise one of the most frequent tumors found in the sella region. The prevalence of PAs is approximately 15%, third only after gliomas and meningioma among intracranial tumors. Autopsy and radiological analysis found that the incidence of PAs is approximately 22.5%. Most PAs are benign, although a few are malignant. Just 0.1% of patients with PAs develop pituitary carcinoma. However, owing to mass effects and unregulated secretion of pituitary hormones, PAs also lead to serious morbidity. The low rate of diagnosis at onset and the lack of effective treatments for patients with recurrent disease increase the morbidity rates. Therefore, there is an urgent need to ascertain the pathological mechanism of PAs for improved diagnosis and development of specific therapies. At present, the pathogenesis of PAs is poorly understood; however, disruption of the cell cycle is known to play an important role. MicroRNAs are short noncoding RNAs that regulate gene expression at the post-transcriptional level and play a role in regulating genes involved in carcinogenesis or tumor suppression. Previous studies have demonstrated a strong connection between dysregulation of microRNAs and dysregulation of the cell cycle in PAs. In this review, we summarize the recent progress in the study of microRNA dysregulation resulting in disruption of the cell cycle in PAs. |
format | Online Article Text |
id | pubmed-5570781 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-55707812017-09-07 Advancements in the study of miRNA regulation during the cell cycle in human pituitary adenomas Zhang, Ting Yang, Zijiang Gao, Heng J Neurooncol Topic Review Pituitary adenomas (PAs), single-clone adenomas arising from pituitary gland cells, comprise one of the most frequent tumors found in the sella region. The prevalence of PAs is approximately 15%, third only after gliomas and meningioma among intracranial tumors. Autopsy and radiological analysis found that the incidence of PAs is approximately 22.5%. Most PAs are benign, although a few are malignant. Just 0.1% of patients with PAs develop pituitary carcinoma. However, owing to mass effects and unregulated secretion of pituitary hormones, PAs also lead to serious morbidity. The low rate of diagnosis at onset and the lack of effective treatments for patients with recurrent disease increase the morbidity rates. Therefore, there is an urgent need to ascertain the pathological mechanism of PAs for improved diagnosis and development of specific therapies. At present, the pathogenesis of PAs is poorly understood; however, disruption of the cell cycle is known to play an important role. MicroRNAs are short noncoding RNAs that regulate gene expression at the post-transcriptional level and play a role in regulating genes involved in carcinogenesis or tumor suppression. Previous studies have demonstrated a strong connection between dysregulation of microRNAs and dysregulation of the cell cycle in PAs. In this review, we summarize the recent progress in the study of microRNA dysregulation resulting in disruption of the cell cycle in PAs. Springer US 2017-06-02 2017 /pmc/articles/PMC5570781/ /pubmed/28577032 http://dx.doi.org/10.1007/s11060-017-2518-5 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Topic Review Zhang, Ting Yang, Zijiang Gao, Heng Advancements in the study of miRNA regulation during the cell cycle in human pituitary adenomas |
title | Advancements in the study of miRNA regulation during the cell cycle in human pituitary adenomas |
title_full | Advancements in the study of miRNA regulation during the cell cycle in human pituitary adenomas |
title_fullStr | Advancements in the study of miRNA regulation during the cell cycle in human pituitary adenomas |
title_full_unstemmed | Advancements in the study of miRNA regulation during the cell cycle in human pituitary adenomas |
title_short | Advancements in the study of miRNA regulation during the cell cycle in human pituitary adenomas |
title_sort | advancements in the study of mirna regulation during the cell cycle in human pituitary adenomas |
topic | Topic Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570781/ https://www.ncbi.nlm.nih.gov/pubmed/28577032 http://dx.doi.org/10.1007/s11060-017-2518-5 |
work_keys_str_mv | AT zhangting advancementsinthestudyofmirnaregulationduringthecellcycleinhumanpituitaryadenomas AT yangzijiang advancementsinthestudyofmirnaregulationduringthecellcycleinhumanpituitaryadenomas AT gaoheng advancementsinthestudyofmirnaregulationduringthecellcycleinhumanpituitaryadenomas |