Cargando…

Evolutionary divergence of the ABO and GBGT1 genes specifying the ABO and FORS blood group systems through chromosomal rearrangements

Human alleles at the ABO and GBGT1 genetic loci specify glycosylation polymorphism of ABO and FORS blood group systems, respectively, and their allelic basis has been elucidated. These genes are also present in other species, but presence/absence, as well as functionality/non-functionality are speci...

Descripción completa

Detalles Bibliográficos
Autor principal: Yamamoto, Fumiichiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571153/
https://www.ncbi.nlm.nih.gov/pubmed/28839219
http://dx.doi.org/10.1038/s41598-017-09765-2
Descripción
Sumario:Human alleles at the ABO and GBGT1 genetic loci specify glycosylation polymorphism of ABO and FORS blood group systems, respectively, and their allelic basis has been elucidated. These genes are also present in other species, but presence/absence, as well as functionality/non-functionality are species-dependent. Molecular mechanisms and forces that created this species divergence were unknown. Utilizing genomic information available from GenBank and Ensembl databases, gene order maps were constructed of a chromosomal region surrounding the ABO and GBGT1 genes from a variety of vertebrate species. Both similarities and differences were observed in their chromosomal organization. Interestingly, the ABO and GBGT1 genes were found located at the boundaries of chromosomal fragments that seem to have been inverted/translocated during species evolution. Genetic alterations, such as deletions and duplications, are prevalent at the ends of rearranged chromosomal fragments, which may partially explain the species-dependent divergence of those clinically important glycosyltransferase genes.