Cargando…
On the performance of pre-microRNA detection algorithms
MicroRNAs are crucial for post-transcriptional gene regulation, and their dysregulation has been associated with diseases like cancer and, therefore, their analysis has become popular. The experimental discovery of miRNAs is cumbersome and, thus, many computational tools have been proposed. Here we...
Autores principales: | Saçar Demirci, Müşerref Duygu, Baumbach, Jan, Allmer, Jens |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571158/ https://www.ncbi.nlm.nih.gov/pubmed/28839141 http://dx.doi.org/10.1038/s41467-017-00403-z |
Ejemplares similares
-
Delineating the impact of machine learning elements in pre-microRNA detection
por: Saçar Demirci, Müşerref Duygu, et al.
Publicado: (2017) -
Improving the Quality of Positive Datasets for the Establishment of Machine Learning Models for pre-microRNA Detection
por: Demirci, Müşerref Duygu Saçar, et al.
Publicado: (2017) -
The impact of feature selection on one and two-class classification performance for plant microRNAs
por: Khalifa, Waleed, et al.
Publicado: (2016) -
Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants
por: Yousef, Malik, et al.
Publicado: (2016) -
The Expressed MicroRNA—mRNA Interactions of Toxoplasma gondii
por: Acar, İlhan E., et al.
Publicado: (2018)