Cargando…
Fungal Hybrid B heme peroxidases – unique fusions of a heme peroxidase domain with a carbohydrate-binding domain
Heme peroxidases, essential peroxide converting oxidoreductases are divided into four independently evolved superfamilies. Within the largest one – the peroxidase-catalase superfamily - two hybrid lineages were described recently. Whereas Hybrid A heme peroxidases represent intermediate enzymes betw...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571214/ https://www.ncbi.nlm.nih.gov/pubmed/28839281 http://dx.doi.org/10.1038/s41598-017-09581-8 |
Sumario: | Heme peroxidases, essential peroxide converting oxidoreductases are divided into four independently evolved superfamilies. Within the largest one – the peroxidase-catalase superfamily - two hybrid lineages were described recently. Whereas Hybrid A heme peroxidases represent intermediate enzymes between ascorbate peroxidases and cytochrome c peroxidases, Hybrid B heme peroxidases are unique fusion proteins comprised of a conserved N-terminal heme peroxidase domain and a C-terminal domain of various sugar binding motifs. So far these peculiar peroxidases are only found in the kingdom of Fungi. Here we present a phylogenetic reconstruction of the whole superfamily with focus on Hybrid B peroxidases. We analyse the domain assembly and putative structure and function of the newly discovered oligosaccharide binding domains. Two distinct carbohydrate binding modules (CBM21 and CBM34) are shown to occur in phytopathogenic ascomycetous orthologs of Hybrid B heme peroxidases only. Based on multiple sequence alignment and homology modeling the structure-function relationships are discussed with respect to physiological function. A concerted action of peroxide cleavage with specific cell-wall carbohydrate binding can support phytopathogens survival within the plant host. |
---|