Cargando…

Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models

BACKGROUND: Wearable sensors gather data that machine-learning models can convert into an identification of physical activities, a clinically relevant outcome measure. However, when individuals with disabilities upgrade to a new walking assistive device, their gait patterns can change, which could a...

Descripción completa

Detalles Bibliográficos
Autores principales: Lonini, Luca, Gupta, Aakash, Deems-Dluhy, Susan, Hoppe-Ludwig, Shenan, Kording, Konrad, Jayaraman, Arun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571233/
https://www.ncbi.nlm.nih.gov/pubmed/28798008
http://dx.doi.org/10.2196/rehab.7317
_version_ 1783259319001677824
author Lonini, Luca
Gupta, Aakash
Deems-Dluhy, Susan
Hoppe-Ludwig, Shenan
Kording, Konrad
Jayaraman, Arun
author_facet Lonini, Luca
Gupta, Aakash
Deems-Dluhy, Susan
Hoppe-Ludwig, Shenan
Kording, Konrad
Jayaraman, Arun
author_sort Lonini, Luca
collection PubMed
description BACKGROUND: Wearable sensors gather data that machine-learning models can convert into an identification of physical activities, a clinically relevant outcome measure. However, when individuals with disabilities upgrade to a new walking assistive device, their gait patterns can change, which could affect the accuracy of activity recognition. OBJECTIVE: The objective of this study was to assess whether we need to train an activity recognition model with labeled data from activities performed with the new assistive device, rather than data from the original device or from healthy individuals. METHODS: Data were collected from 11 healthy controls as well as from 11 age-matched individuals with disabilities who used a standard stance control knee-ankle-foot orthosis (KAFO), and then a computer-controlled adaptive KAFO (Ottobock C-Brace). All subjects performed a structured set of functional activities while wearing an accelerometer on their waist, and random forest classifiers were used as activity classification models. We examined both global models, which are trained on other subjects (healthy or disabled individuals), and personal models, which are trained and tested on the same subject. RESULTS: Median accuracies of global and personal models trained with data from the new KAFO were significantly higher (61% and 76%, respectively) than those of models that use data from the original KAFO (55% and 66%, respectively) (Wilcoxon signed-rank test, P=.006 and P=.01). These models also massively outperformed a global model trained on healthy subjects, which only achieved a median accuracy of 53%. Device-specific models conferred a major advantage for activity recognition. CONCLUSIONS: Our results suggest that when patients use a new assistive device, labeled data from activities performed with the specific device are needed for maximal precision activity recognition. Personal device-specific models yield the highest accuracy in such scenarios, whereas models trained on healthy individuals perform poorly and should not be used in patient populations.
format Online
Article
Text
id pubmed-5571233
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-55712332017-09-07 Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models Lonini, Luca Gupta, Aakash Deems-Dluhy, Susan Hoppe-Ludwig, Shenan Kording, Konrad Jayaraman, Arun JMIR Rehabil Assist Technol Original Paper BACKGROUND: Wearable sensors gather data that machine-learning models can convert into an identification of physical activities, a clinically relevant outcome measure. However, when individuals with disabilities upgrade to a new walking assistive device, their gait patterns can change, which could affect the accuracy of activity recognition. OBJECTIVE: The objective of this study was to assess whether we need to train an activity recognition model with labeled data from activities performed with the new assistive device, rather than data from the original device or from healthy individuals. METHODS: Data were collected from 11 healthy controls as well as from 11 age-matched individuals with disabilities who used a standard stance control knee-ankle-foot orthosis (KAFO), and then a computer-controlled adaptive KAFO (Ottobock C-Brace). All subjects performed a structured set of functional activities while wearing an accelerometer on their waist, and random forest classifiers were used as activity classification models. We examined both global models, which are trained on other subjects (healthy or disabled individuals), and personal models, which are trained and tested on the same subject. RESULTS: Median accuracies of global and personal models trained with data from the new KAFO were significantly higher (61% and 76%, respectively) than those of models that use data from the original KAFO (55% and 66%, respectively) (Wilcoxon signed-rank test, P=.006 and P=.01). These models also massively outperformed a global model trained on healthy subjects, which only achieved a median accuracy of 53%. Device-specific models conferred a major advantage for activity recognition. CONCLUSIONS: Our results suggest that when patients use a new assistive device, labeled data from activities performed with the specific device are needed for maximal precision activity recognition. Personal device-specific models yield the highest accuracy in such scenarios, whereas models trained on healthy individuals perform poorly and should not be used in patient populations. JMIR Publications 2017-08-10 /pmc/articles/PMC5571233/ /pubmed/28798008 http://dx.doi.org/10.2196/rehab.7317 Text en ©Luca Lonini, Aakash Gupta, Susan Deems-Dluhy, Shenan Hoppe-Ludwig, Konrad Kording, Arun Jayaraman. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 10.08.2017. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Rehabilitation and Assistive Technology, is properly cited. The complete bibliographic information, a link to the original publication on http://rehab.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Lonini, Luca
Gupta, Aakash
Deems-Dluhy, Susan
Hoppe-Ludwig, Shenan
Kording, Konrad
Jayaraman, Arun
Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models
title Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models
title_full Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models
title_fullStr Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models
title_full_unstemmed Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models
title_short Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models
title_sort activity recognition in individuals walking with assistive devices: the benefits of device-specific models
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571233/
https://www.ncbi.nlm.nih.gov/pubmed/28798008
http://dx.doi.org/10.2196/rehab.7317
work_keys_str_mv AT loniniluca activityrecognitioninindividualswalkingwithassistivedevicesthebenefitsofdevicespecificmodels
AT guptaaakash activityrecognitioninindividualswalkingwithassistivedevicesthebenefitsofdevicespecificmodels
AT deemsdluhysusan activityrecognitioninindividualswalkingwithassistivedevicesthebenefitsofdevicespecificmodels
AT hoppeludwigshenan activityrecognitioninindividualswalkingwithassistivedevicesthebenefitsofdevicespecificmodels
AT kordingkonrad activityrecognitioninindividualswalkingwithassistivedevicesthebenefitsofdevicespecificmodels
AT jayaramanarun activityrecognitioninindividualswalkingwithassistivedevicesthebenefitsofdevicespecificmodels