Cargando…

Epigenetics in Myeloproliferative Neoplasms

A decade on from the description of JAK2 V617F, the MPNs are circumscribed by an increasingly intricate landscape. There is now evidence that they are likely the result of combined genetic dysregulation, with several mutated genes involved in the regulation of epigenetic mechanisms. Epigenetic chang...

Descripción completa

Detalles Bibliográficos
Autores principales: McPherson, Suzanne, McMullin, Mary Frances, Mills, Ken
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571538/
https://www.ncbi.nlm.nih.gov/pubmed/28677265
http://dx.doi.org/10.1111/jcmm.13095
Descripción
Sumario:A decade on from the description of JAK2 V617F, the MPNs are circumscribed by an increasingly intricate landscape. There is now evidence that they are likely the result of combined genetic dysregulation, with several mutated genes involved in the regulation of epigenetic mechanisms. Epigenetic changes are not due to a change in the DNA sequence but are reversible modifications that dictate the way in which genes may be expressed (or silenced). Among the epigenetic mechanisms, DNA methylation is probably the best described. Currently known MPN‐associated mutations now include JAK2, MPL, LNK, CBL, CALR, TET2, ASXL1, IDH1, IDH2, IKZF1 and EZH2. Enhancing our knowledge about the mutation profile of patients may allow them to be stratified into risk groups which would aid clinical decision making. Ongoing work will answer whether the use of epigenetic therapies as alterative pathway targets in combination with JAK inhibitors may be more effective than single agent treatment.