Cargando…

Genetic influences on the human oral microbiome

BACKGROUND: The human oral microbiome is formed early in development. Its composition is influenced by environmental factors including diet, substance use, oral health, and overall health and disease. The influence of human genes on the composition and stability of the oral microbiome is still poorl...

Descripción completa

Detalles Bibliográficos
Autores principales: Demmitt, Brittany A., Corley, Robin P., Huibregtse, Brooke M., Keller, Matthew C., Hewitt, John K., McQueen, Matthew B., Knight, Rob, McDermott, Ivy, Krauter, Kenneth S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571580/
https://www.ncbi.nlm.nih.gov/pubmed/28836939
http://dx.doi.org/10.1186/s12864-017-4008-8
_version_ 1783259370675503104
author Demmitt, Brittany A.
Corley, Robin P.
Huibregtse, Brooke M.
Keller, Matthew C.
Hewitt, John K.
McQueen, Matthew B.
Knight, Rob
McDermott, Ivy
Krauter, Kenneth S.
author_facet Demmitt, Brittany A.
Corley, Robin P.
Huibregtse, Brooke M.
Keller, Matthew C.
Hewitt, John K.
McQueen, Matthew B.
Knight, Rob
McDermott, Ivy
Krauter, Kenneth S.
author_sort Demmitt, Brittany A.
collection PubMed
description BACKGROUND: The human oral microbiome is formed early in development. Its composition is influenced by environmental factors including diet, substance use, oral health, and overall health and disease. The influence of human genes on the composition and stability of the oral microbiome is still poorly understood. We studied both environmental and genetic characteristics on the oral microbiome in a large twin sample as well as in a large cohort of unrelated individuals. We identify several significantly heritable features of the oral microbiome. The heritability persists in twins even when their cohabitation changes. The heritability of these traits correlates with the cumulative genetic contributions of over half a million single nucleotide sequence variants measured in a different population of unrelated individuals. Comparison of same-sex and opposite sex cotwins showed no significant differences. We show that two new loci on chromosomes 7 and 12 are associated with the most heritable traits. RESULTS: An analysis of 752 twin pairs from the Colorado Twin Registry, shows that the beta-diversity of monozygotic twins is significantly lower than for dizygotic or unrelated individuals. This is independent of cohabitation status. Intraclass correlation coefficients of nearly all taxa examined were higher for MZ than DZ twin pairs. A comparison of individuals sampled over 2-7 years confirmed previous reports that the oral microbiome remains relatively more stable in individuals over that time than to unrelated people. Twin modeling shows that a number of microbiome phenotypes were more than 50% heritable consistent with the hypothesis that human genes influence microbial populations. To identify loci that could influence microbiome phenotypes, we carried out an unbiased GWAS analysis which identified one locus on chromosome 7 near the gene IMMPL2 that reached genome-wide significance after correcting for multiple testing. Another locus on chromosome 12 near the non-coding RNA gene INHBA-AS1 achieved genome-wide significance when analyzed using KGG4 that sums SNP significance across coding genes. DISCUSSION: Using multiple methods, we have demonstrated that some aspects of the human oral microbiome are heritable and that with a relatively small sample we were able to identify two previously unidentified loci that may be involved. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-017-4008-8) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5571580
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-55715802017-08-30 Genetic influences on the human oral microbiome Demmitt, Brittany A. Corley, Robin P. Huibregtse, Brooke M. Keller, Matthew C. Hewitt, John K. McQueen, Matthew B. Knight, Rob McDermott, Ivy Krauter, Kenneth S. BMC Genomics Research Article BACKGROUND: The human oral microbiome is formed early in development. Its composition is influenced by environmental factors including diet, substance use, oral health, and overall health and disease. The influence of human genes on the composition and stability of the oral microbiome is still poorly understood. We studied both environmental and genetic characteristics on the oral microbiome in a large twin sample as well as in a large cohort of unrelated individuals. We identify several significantly heritable features of the oral microbiome. The heritability persists in twins even when their cohabitation changes. The heritability of these traits correlates with the cumulative genetic contributions of over half a million single nucleotide sequence variants measured in a different population of unrelated individuals. Comparison of same-sex and opposite sex cotwins showed no significant differences. We show that two new loci on chromosomes 7 and 12 are associated with the most heritable traits. RESULTS: An analysis of 752 twin pairs from the Colorado Twin Registry, shows that the beta-diversity of monozygotic twins is significantly lower than for dizygotic or unrelated individuals. This is independent of cohabitation status. Intraclass correlation coefficients of nearly all taxa examined were higher for MZ than DZ twin pairs. A comparison of individuals sampled over 2-7 years confirmed previous reports that the oral microbiome remains relatively more stable in individuals over that time than to unrelated people. Twin modeling shows that a number of microbiome phenotypes were more than 50% heritable consistent with the hypothesis that human genes influence microbial populations. To identify loci that could influence microbiome phenotypes, we carried out an unbiased GWAS analysis which identified one locus on chromosome 7 near the gene IMMPL2 that reached genome-wide significance after correcting for multiple testing. Another locus on chromosome 12 near the non-coding RNA gene INHBA-AS1 achieved genome-wide significance when analyzed using KGG4 that sums SNP significance across coding genes. DISCUSSION: Using multiple methods, we have demonstrated that some aspects of the human oral microbiome are heritable and that with a relatively small sample we were able to identify two previously unidentified loci that may be involved. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-017-4008-8) contains supplementary material, which is available to authorized users. BioMed Central 2017-08-24 /pmc/articles/PMC5571580/ /pubmed/28836939 http://dx.doi.org/10.1186/s12864-017-4008-8 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Demmitt, Brittany A.
Corley, Robin P.
Huibregtse, Brooke M.
Keller, Matthew C.
Hewitt, John K.
McQueen, Matthew B.
Knight, Rob
McDermott, Ivy
Krauter, Kenneth S.
Genetic influences on the human oral microbiome
title Genetic influences on the human oral microbiome
title_full Genetic influences on the human oral microbiome
title_fullStr Genetic influences on the human oral microbiome
title_full_unstemmed Genetic influences on the human oral microbiome
title_short Genetic influences on the human oral microbiome
title_sort genetic influences on the human oral microbiome
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571580/
https://www.ncbi.nlm.nih.gov/pubmed/28836939
http://dx.doi.org/10.1186/s12864-017-4008-8
work_keys_str_mv AT demmittbrittanya geneticinfluencesonthehumanoralmicrobiome
AT corleyrobinp geneticinfluencesonthehumanoralmicrobiome
AT huibregtsebrookem geneticinfluencesonthehumanoralmicrobiome
AT kellermatthewc geneticinfluencesonthehumanoralmicrobiome
AT hewittjohnk geneticinfluencesonthehumanoralmicrobiome
AT mcqueenmatthewb geneticinfluencesonthehumanoralmicrobiome
AT knightrob geneticinfluencesonthehumanoralmicrobiome
AT mcdermottivy geneticinfluencesonthehumanoralmicrobiome
AT krauterkenneths geneticinfluencesonthehumanoralmicrobiome