Cargando…
2-Butanone as a carbon dioxide mimic in attractant blends for the Afrotropical malaria mosquitoes Anopheles gambiae and Anopheles funestus
BACKGROUND: Most odour baits designed to attract host-seeking mosquitoes contain carbon dioxide (CO(2)), which enhances trap catches, given its role as a mosquito flight activator. However, the use of CO(2) is expensive and logistically demanding for prolonged area-wide use. METHODS: This study expl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571623/ https://www.ncbi.nlm.nih.gov/pubmed/28836977 http://dx.doi.org/10.1186/s12936-017-1998-2 |
Sumario: | BACKGROUND: Most odour baits designed to attract host-seeking mosquitoes contain carbon dioxide (CO(2)), which enhances trap catches, given its role as a mosquito flight activator. However, the use of CO(2) is expensive and logistically demanding for prolonged area-wide use. METHODS: This study explored the possibility of replacing organically-produced CO(2) with 2-butanone in odour blends targeting host-seeking malaria mosquitoes. During semi-field and field experiments MM-X traps were baited with a human odour mimic (MB5 blend) plus CO(2) or 2-butanone at varying concentrations. Unbaited traps formed a control. The attraction of Anopheles gambiae s.s., Anopheles arabiensis and Anopheles funestus to these differently baited traps was measured and mean catch sizes were compared to determine whether 2-butanone could form a viable replacement for CO(2) for these target species. RESULTS: Under semi-field conditions significantly more female An. gambiae mosquitoes were attracted to a reference attractant blend (MB5 + CO(2)) compared to MB5 without CO(2) (P < 0.001), CO(2) alone (P < 0.001), or a trap without a bait (P < 0.001). Whereas MB5 + CO(2) attracted significantly more mosquitoes than its variants containing MB5 plus different dilutions of 2-butanone (P = 0.001), the pure form (99.5%) and the 1.0% dilution of 2-butanone gave promising results. In the field mean indoor catches of wild female An. gambiae s.l. in traps containing MB5 + CO(2) (5.07 ± 1.01) and MB5 + 99.5% 2-butanone (3.10 ± 0.65) did not differ significantly (P = 0.09). The mean indoor catches of wild female An. funestus attracted to traps containing MB5 + CO(2) (3.87 ± 0.79) and MB5 + 99.5% 2-butanone (3.37 ± 0.70) were also similar (P = 0.635). Likewise, the mean outdoor catches of An. gambiae and An. funestus associated with MB5 + CO(2) (1.63 ± 0.38 and 0.53 ± 0.17, respectively) and MB5 + 99.5% 2-butanone (1.33 ± 0.32 and 0.40 ± 0.14, respectively) were not significantly different (P = 0.544 and P = 0.533, respectively). CONCLUSION: These results demonstrate that 2-butanone can serve as a good replacement for CO(2) in synthetic blends of attractants designed to attract host-seeking An. gambiae s.l. and An. funestus mosquitoes. This development underscores the possibility of using odour-baited traps (OBTs) for monitoring and surveillance as well as control of malaria vectors and potentially other mosquito species. |
---|