Cargando…

Valuation of opportunity costs by rats working for rewarding electrical brain stimulation

Pursuit of one goal typically precludes simultaneous pursuit of another. Thus, each exclusive activity entails an “opportunity cost:” the forgone benefits from the next-best activity eschewed. The present experiment estimates, in laboratory rats, the function that maps objective opportunity costs in...

Descripción completa

Detalles Bibliográficos
Autores principales: Solomon, Rebecca Brana, Conover, Kent, Shizgal, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571941/
https://www.ncbi.nlm.nih.gov/pubmed/28841663
http://dx.doi.org/10.1371/journal.pone.0182120
Descripción
Sumario:Pursuit of one goal typically precludes simultaneous pursuit of another. Thus, each exclusive activity entails an “opportunity cost:” the forgone benefits from the next-best activity eschewed. The present experiment estimates, in laboratory rats, the function that maps objective opportunity costs into subjective ones. In an operant chamber, rewarding electrical brain stimulation was delivered when the cumulative time a lever had been depressed reached a criterion duration. The value of the activities forgone during this duration is the opportunity cost of the electrical reward. We determined which of four functions best describes how objective opportunity costs, expressed as the required duration of lever depression, are translated into their subjective equivalents. The simplest account is the identity function, which equates subjective and objective opportunity costs. A variant of this function called the “sigmoidal-slope function,” converges on the identity function at longer durations but deviates from it at shorter durations. The sigmoidal-slope function has the form of a hockey stick. The flat “blade” denotes a range over which opportunity costs are subjectively equivalent; these durations are too short to allow substitution of more beneficial activities. The blade extends into an upward-curving portion over which costs become discriminable and finally into the straight “handle,” over which objective and subjective costs match. The two remaining functions are based on hyperbolic and exponential temporal discounting, respectively. The results are best described by the sigmoidal-slope function. That this is so suggests that different principles of intertemporal choice are involved in the evaluation of time spent working for a reward or waiting for its delivery. The subjective opportunity-cost function plays a key role in the evaluation and selection of goals. An accurate description of its form and parameters is essential to successful modeling and prediction of instrumental performance and reward-related decision making.