Cargando…
Tensor decomposition-based unsupervised feature extraction applied to matrix products for multi-view data processing
In the current era of big data, the amount of data available is continuously increasing. Both the number and types of samples, or features, are on the rise. The mixing of distinct features often makes interpretation more difficult. However, separate analysis of individual types requires subsequent i...
Autor principal: | Taguchi, Y-h. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571984/ https://www.ncbi.nlm.nih.gov/pubmed/28841719 http://dx.doi.org/10.1371/journal.pone.0183933 |
Ejemplares similares
-
Correction: Tensor decomposition-based unsupervised feature extraction applied to matrix products for multi-view data processing
por: Taguchi, Y-h.
Publicado: (2018) -
Tensor-Decomposition-Based Unsupervised Feature Extraction Applied to Prostate Cancer Multiomics Data
por: Taguchi, Y-h., et al.
Publicado: (2020) -
Tensor Decomposition-Based Unsupervised Feature Extraction Applied to Single-Cell Gene Expression Analysis
por: Taguchi, Y-h., et al.
Publicado: (2019) -
Tensor-Decomposition-Based Unsupervised Feature Extraction in Single-Cell Multiomics Data Analysis
por: Taguchi, Y-h., et al.
Publicado: (2021) -
Identification of candidate drugs using tensor-decomposition-based unsupervised feature extraction in integrated analysis of gene expression between diseases and DrugMatrix datasets
por: Taguchi, Y.-h.
Publicado: (2017)