Cargando…
Integrating In Vitro, Modeling, and In Vivo Approaches to Investigate Warfarin Bioequivalence
We demonstrate the use of modeling and simulation to investigate bioequivalence (BE) concerns raised about generic warfarin products. To test the hypothesis that the loss of isopropyl alcohol and slow dissolution in acidic pH has significant impact on the pharmacokinetics of warfarin sodium tablets,...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572358/ https://www.ncbi.nlm.nih.gov/pubmed/28379643 http://dx.doi.org/10.1002/psp4.12198 |
_version_ | 1783259511198318592 |
---|---|
author | Zhang, X Wen, H Fan, J Vince, B Li, T Gao, W Kinjo, M Brown, J Sun, W Jiang, W Lionberger, R |
author_facet | Zhang, X Wen, H Fan, J Vince, B Li, T Gao, W Kinjo, M Brown, J Sun, W Jiang, W Lionberger, R |
author_sort | Zhang, X |
collection | PubMed |
description | We demonstrate the use of modeling and simulation to investigate bioequivalence (BE) concerns raised about generic warfarin products. To test the hypothesis that the loss of isopropyl alcohol and slow dissolution in acidic pH has significant impact on the pharmacokinetics of warfarin sodium tablets, we conducted physiologically based pharmacokinetic absorption modeling and simulation using formulation factors or in vitro dissolution profiles as input parameters. Sensitivity analyses indicated that warfarin pharmacokinetics was not sensitive to solubility, particle size, density, or dissolution rate in pH 4.5, but was affected by dissolution rate in pH 6.8 and potency. Virtual BE studies suggested that stressed warfarin sodium tablets with slow dissolution rate in pH 4.5 but having similar dissolution rate in pH 6.8 would be bioequivalent to the unstressed warfarin sodium tablets. A four‐way, crossover, single‐dose BE study in healthy subjects was conducted to test the same hypothesis and confirmed the simulation conclusion. |
format | Online Article Text |
id | pubmed-5572358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55723582017-08-30 Integrating In Vitro, Modeling, and In Vivo Approaches to Investigate Warfarin Bioequivalence Zhang, X Wen, H Fan, J Vince, B Li, T Gao, W Kinjo, M Brown, J Sun, W Jiang, W Lionberger, R CPT Pharmacometrics Syst Pharmacol Original Articles We demonstrate the use of modeling and simulation to investigate bioequivalence (BE) concerns raised about generic warfarin products. To test the hypothesis that the loss of isopropyl alcohol and slow dissolution in acidic pH has significant impact on the pharmacokinetics of warfarin sodium tablets, we conducted physiologically based pharmacokinetic absorption modeling and simulation using formulation factors or in vitro dissolution profiles as input parameters. Sensitivity analyses indicated that warfarin pharmacokinetics was not sensitive to solubility, particle size, density, or dissolution rate in pH 4.5, but was affected by dissolution rate in pH 6.8 and potency. Virtual BE studies suggested that stressed warfarin sodium tablets with slow dissolution rate in pH 4.5 but having similar dissolution rate in pH 6.8 would be bioequivalent to the unstressed warfarin sodium tablets. A four‐way, crossover, single‐dose BE study in healthy subjects was conducted to test the same hypothesis and confirmed the simulation conclusion. John Wiley and Sons Inc. 2017-07-13 2017-08 /pmc/articles/PMC5572358/ /pubmed/28379643 http://dx.doi.org/10.1002/psp4.12198 Text en © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Articles Zhang, X Wen, H Fan, J Vince, B Li, T Gao, W Kinjo, M Brown, J Sun, W Jiang, W Lionberger, R Integrating In Vitro, Modeling, and In Vivo Approaches to Investigate Warfarin Bioequivalence |
title | Integrating In Vitro, Modeling, and In Vivo Approaches to Investigate Warfarin Bioequivalence |
title_full | Integrating In Vitro, Modeling, and In Vivo Approaches to Investigate Warfarin Bioequivalence |
title_fullStr | Integrating In Vitro, Modeling, and In Vivo Approaches to Investigate Warfarin Bioequivalence |
title_full_unstemmed | Integrating In Vitro, Modeling, and In Vivo Approaches to Investigate Warfarin Bioequivalence |
title_short | Integrating In Vitro, Modeling, and In Vivo Approaches to Investigate Warfarin Bioequivalence |
title_sort | integrating in vitro, modeling, and in vivo approaches to investigate warfarin bioequivalence |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572358/ https://www.ncbi.nlm.nih.gov/pubmed/28379643 http://dx.doi.org/10.1002/psp4.12198 |
work_keys_str_mv | AT zhangx integratinginvitromodelingandinvivoapproachestoinvestigatewarfarinbioequivalence AT wenh integratinginvitromodelingandinvivoapproachestoinvestigatewarfarinbioequivalence AT fanj integratinginvitromodelingandinvivoapproachestoinvestigatewarfarinbioequivalence AT vinceb integratinginvitromodelingandinvivoapproachestoinvestigatewarfarinbioequivalence AT lit integratinginvitromodelingandinvivoapproachestoinvestigatewarfarinbioequivalence AT gaow integratinginvitromodelingandinvivoapproachestoinvestigatewarfarinbioequivalence AT kinjom integratinginvitromodelingandinvivoapproachestoinvestigatewarfarinbioequivalence AT brownj integratinginvitromodelingandinvivoapproachestoinvestigatewarfarinbioequivalence AT sunw integratinginvitromodelingandinvivoapproachestoinvestigatewarfarinbioequivalence AT jiangw integratinginvitromodelingandinvivoapproachestoinvestigatewarfarinbioequivalence AT lionbergerr integratinginvitromodelingandinvivoapproachestoinvestigatewarfarinbioequivalence |