Cargando…
Continuous Timescale Long-Short Term Memory Neural Network for Human Intent Understanding
Understanding of human intention by observing a series of human actions has been a challenging task. In order to do so, we need to analyze longer sequences of human actions related with intentions and extract the context from the dynamic features. The multiple timescales recurrent neural network (MT...
Autores principales: | Yu, Zhibin, Moirangthem, Dennis S., Lee, Minho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572368/ https://www.ncbi.nlm.nih.gov/pubmed/28878646 http://dx.doi.org/10.3389/fnbot.2017.00042 |
Ejemplares similares
-
The neuronal response at extended timescales: long-term correlations without long-term memory
por: Soudry, Daniel, et al.
Publicado: (2014) -
Visual continuous recognition reveals behavioral and neural differences for short- and long-term scene memory
por: Ellmore, Timothy M., et al.
Publicado: (2022) -
Mathematical processing of trading strategy based on long short-term memory neural network model
por: Wang, Han-Yang, et al.
Publicado: (2022) -
Atypical intrinsic neural timescale in autism
por: Watanabe, Takamitsu, et al.
Publicado: (2019) -
Multi-Timescale Memory Dynamics Extend Task Repertoire in a Reinforcement Learning Network With Attention-Gated Memory
por: Martinolli, Marco, et al.
Publicado: (2018)