Cargando…

Modifying electron transfer between photoredox and organocatalytic units via framework interpenetration for β-carbonyl functionalization

Modifying electron transfer pathways is essential to controlling the regioselectivity of heterogeneous photochemical transformations relevant to saturated carbonyls, due to fixed catalytic sites. Here we show that the interpenetration of metal–organic frameworks that contain both photoredox and asym...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Zhengqiang, He, Cheng, Wang, Xiaoge, Duan, Chunying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572462/
https://www.ncbi.nlm.nih.gov/pubmed/28842552
http://dx.doi.org/10.1038/s41467-017-00416-8
Descripción
Sumario:Modifying electron transfer pathways is essential to controlling the regioselectivity of heterogeneous photochemical transformations relevant to saturated carbonyls, due to fixed catalytic sites. Here we show that the interpenetration of metal–organic frameworks that contain both photoredox and asymmetric catalytic units can adjust the separations and electron transfer process between them. The enforced close proximity between two active sites via framework interpenetration accelerates the electron transfer between the oxidized photosensitizer and enamine intermediate, enabling the generation of 5πe(−) β-enaminyl radicals before the intermediates couple with other active species, achieving β-functionalized carbonyl products. The enriched benzoate and iminium groups in the catalysts provide a suitable Lewis-acid/base environment to stabilize the active radicals, allowing the protocol described to advance the β-functionalization of saturated cyclic ketones with aryl ketones to deliver γ-hydroxyketone motifs. The homochiral environment of the pores within the recyclable frameworks provides additional spatial constraints to enhance the regioselectivity and enantioselectivity.