Cargando…
Statistics and Deep Belief Network-Based Cardiovascular Risk Prediction
OBJECTIVES: Cardiovascular predictions are related to patients' quality of life and health. Therefore, a risk prediction model for cardiovascular conditions is needed. METHODS: In this paper, we propose a cardiovascular disease prediction model using the sixth Korea National Health and Nutritio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572520/ https://www.ncbi.nlm.nih.gov/pubmed/28875051 http://dx.doi.org/10.4258/hir.2017.23.3.169 |
Sumario: | OBJECTIVES: Cardiovascular predictions are related to patients' quality of life and health. Therefore, a risk prediction model for cardiovascular conditions is needed. METHODS: In this paper, we propose a cardiovascular disease prediction model using the sixth Korea National Health and Nutrition Examination Survey (KNHANES-VI) 2013 dataset to analyze cardiovascular-related health data. First, statistical analysis was performed to find variables related to cardiovascular disease using health data related to cardiovascular disease. Second, a model of cardiovascular risk prediction by learning based on the deep belief network (DBN) was developed. RESULTS: The proposed statistical DBN-based prediction model showed accuracy and an ROC curve of 83.9% and 0.790, respectively. Thus, the proposed statistical DBN performed better than other prediction algorithms. CONCLUSIONS: The DBN proposed in this study appears to be effective in predicting cardiovascular risk and, in particular, is expected to be applicable to the prediction of cardiovascular disease in Koreans. |
---|