Cargando…
Logistic Bayesian LASSO for Genetic Association Analysis of Data from Complex Sampling Designs
Detecting gene-environment interactions (GXE) with rare variants is critical in dissecting the etiology of common diseases. Interactions with rare haplotype variants (rHTV) are of particular interest. At the same time, complex sampling designs, such as stratified random sampling, are becoming increa...
Autores principales: | Zhang, Yuan, Hofmann, Jonathan N., Purdue, Mark P., Lin, Shili, Biswas, Swati |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572548/ https://www.ncbi.nlm.nih.gov/pubmed/28424482 http://dx.doi.org/10.1038/jhg.2017.43 |
Ejemplares similares
-
Evaluation of logistic Bayesian LASSO for identifying association with rare haplotypes
por: Biswas, Swati, et al.
Publicado: (2014) -
Logistic Bayesian LASSO for detecting association combining family and case-control data
por: Zhou, Xiaofei, et al.
Publicado: (2018) -
An Improved Version of Logistic Bayesian LASSO for Detecting Rare Haplotype-Environment Interactions with Application to Lung Cancer
por: Zhang, Yuan, et al.
Publicado: (2015) -
Bayesian Lasso and multinomial logistic regression on GPU
por: Češnovar, Rok, et al.
Publicado: (2017) -
Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping
por: Huang, Anhui, et al.
Publicado: (2013)