Cargando…
Automated Classification of Lung Cancer Types from Cytological Images Using Deep Convolutional Neural Networks
Lung cancer is a leading cause of death worldwide. Currently, in differential diagnosis of lung cancer, accurate classification of cancer types (adenocarcinoma, squamous cell carcinoma, and small cell carcinoma) is required. However, improving the accuracy and stability of diagnosis is challenging....
Autores principales: | Teramoto, Atsushi, Tsukamoto, Tetsuya, Kiriyama, Yuka, Fujita, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572620/ https://www.ncbi.nlm.nih.gov/pubmed/28884120 http://dx.doi.org/10.1155/2017/4067832 |
Ejemplares similares
-
Comparison of Fine-Tuned Deep Convolutional Neural Networks for the Automated Classification of Lung Cancer Cytology Images with Integration of Additional Classifiers
por: Tsukamoto, Tetsuya, et al.
Publicado: (2022) -
Automated Classification of Idiopathic Pulmonary Fibrosis in Pathological Images Using Convolutional Neural Network and Generative Adversarial Networks
por: Teramoto, Atsushi, et al.
Publicado: (2022) -
Deep learning approach to classification of lung cytological images: Two-step training using actual and synthesized images by progressive growing of generative adversarial networks
por: Teramoto, Atsushi, et al.
Publicado: (2020) -
Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks
por: Onishi, Yuya, et al.
Publicado: (2019) -
Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning
por: Teramoto, Atsushi, et al.
Publicado: (2021)