Cargando…
Reprogramming Bone Marrow Stem Cells to Functional Endothelial Cells in a Mini Pig Animal Model
BACKGROUND: The aims of this study were to compare the morphological, biochemical, and functional properties of reprogrammed bone marrow stem cell (BMSC)-derived arterial endothelial cells (AECs) and venous endothelial cells (VECs), following adenosine triphosphate (ATP)-stimulation in a mini pig an...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572781/ https://www.ncbi.nlm.nih.gov/pubmed/28814711 http://dx.doi.org/10.12659/MSMBR.905081 |
Sumario: | BACKGROUND: The aims of this study were to compare the morphological, biochemical, and functional properties of reprogrammed bone marrow stem cell (BMSC)-derived arterial endothelial cells (AECs) and venous endothelial cells (VECs), following adenosine triphosphate (ATP)-stimulation in a mini pig animal model. MATERIAL/METHODS: Bone marrow aspiration was performed in six adult mini pigs. Harvested mononuclear cells were isolated, cultured, and treated with vascular endothelial growth factor (VEGF) (16 μg/ml). Transformed cells were characterized using immunofluorescence staining for CD31 and von Willebrandt factor (vWF) and expression of endothelial nitric oxide synthase (eNOS). Cell release of nitric oxide (cNO) was measured using spectrophotometry. Matrigel assays were used to investigate angiogenesis in transformed BMSCs. RESULTS: Reprogrammed BMSCs in culture showed a typical cobblestone-like pattern of growth. Immunofluorescence staining was positive for CD31 and vWF expression. Expression of eNOS, using immunofluorescence staining and Western blot, showed no difference between the reprogrammed BMSCs and VECs. Spectrophotometric examination following stimulation with 10mmol/l ATP, showed comparable cNO release for reprogrammed BMSCs (10.87±1.76 pmol/10(6) cells/min) and VECs (13.23±2.16 pmol/10(6) cells/min), but reduced cNO release for AECS (3.44±0.75 pmol/10(6) cells/min). Matrigel assay for angiogenesis showed vascular tube formation of differentiated BMSC endothelial cells (grade 3.25). BMSCs cultured without VEGF did not demonstrate vascular tube formation. CONCLUSIONS: The findings of this study showed that eNOS expression and release of NO could be used to show that BMSCs can be reprogrammed to functional VECs and AECs. |
---|