Cargando…
Robust Adaptive Lasso method for parameter’s estimation and variable selection in high-dimensional sparse models
High dimensional data are commonly encountered in various scientific fields and pose great challenges to modern statistical analysis. To address this issue different penalized regression procedures have been introduced in the litrature, but these methods cannot cope with the problem of outliers and...
Autores principales: | Wahid, Abdul, Khan, Dost Muhammad, Hussain, Ijaz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573134/ https://www.ncbi.nlm.nih.gov/pubmed/28846717 http://dx.doi.org/10.1371/journal.pone.0183518 |
Ejemplares similares
-
Sparse Damage Detection with Complex Group Lasso and Adaptive Complex Group Lasso
por: Dimopoulos, Vasileios, et al.
Publicado: (2022) -
Sparse EEG/MEG source estimation via a group lasso
por: Lim, Michael, et al.
Publicado: (2017) -
Groupyr: Sparse Group Lasso in Python
por: Richie-Halford, Adam, et al.
Publicado: (2021) -
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
por: Gulraiz, Asma, et al.
Publicado: (2022) -
Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
por: Klosa, Jan, et al.
Publicado: (2020)