Cargando…
Molecular cloning and characterization of pirarucu (Arapaima gigas) follicle-stimulating hormone and luteinizing hormone β-subunit cDNAs
The common gonadotrophic hormone α-subunit (GTHα) has been previously isolated by our research group from A. gigas pituitaries; in the present work the cDNA sequences encoding FSHβ and LHβ subunits have also been isolated from the same species of fish. The FSH β-subunit consists of 126 amino acids w...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573580/ https://www.ncbi.nlm.nih.gov/pubmed/28846736 http://dx.doi.org/10.1371/journal.pone.0183545 |
Sumario: | The common gonadotrophic hormone α-subunit (GTHα) has been previously isolated by our research group from A. gigas pituitaries; in the present work the cDNA sequences encoding FSHβ and LHβ subunits have also been isolated from the same species of fish. The FSH β-subunit consists of 126 amino acids with a putative 18 amino acid signal peptide and a 108 amino acid mature peptide, while the LH β-subunit consists of 141 amino acids with a putative 24 amino acid amino acid signal peptide and a 117 amino acid mature peptide. The highest identity, based on the amino acid sequences, was found with the order of Anguilliformes (61%) for FSHβ and of Cypriniformes (76%) for LHβ, followed by Siluriformes, 53% for FSHβ and 75% for LHβ. Interestingly, the identity with the corresponding human amino acid sequences was still remarkable: 45.1% for FSHβ and 51.4% for LHβ. Three dimensional models of ag-FSH and ag-LH, generated by using the crystal structures of h-FSH and h-LH as the respective templates and carried out via comparative modeling and molecular dynamics simulations, suggested the presence of the so-called “seat-belt”, favored by a disulfide bond formed between the 3(rd) and 12(th) cysteine in both β-subunits. The sequences found will be used for the biotechnological synthesis of A. gigas gonadotrophic hormones (ag-FSH and ag-LH). In a first approach, to ascertain that the cloned transcripts allow the expression of the heterodimeric hormones, ag-FSH has been synthesized in human embryonic kidney 293 (HEK293) cells, preliminarily purified and characterized. |
---|