Cargando…
Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning
We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured...
Autores principales: | Feng, Yuntian, Zhang, Hongjun, Hao, Wenning, Chen, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5574273/ https://www.ncbi.nlm.nih.gov/pubmed/28894463 http://dx.doi.org/10.1155/2017/7643065 |
Ejemplares similares
-
Relation extraction: advancements through deep learning and entity-related features
por: Zhao, Youwen, et al.
Publicado: (2023) -
Attention-based deep residual learning network for entity relation extraction in Chinese EMRs
por: Zhang, Zhichang, et al.
Publicado: (2019) -
Learning Macromanagement in Starcraft by Deep Reinforcement Learning
por: Huang, Wenzhen, et al.
Publicado: (2021) -
Joint Optimization of Bandwidth and Power Allocation in Uplink Systems with Deep Reinforcement Learning
por: Zhang, Chongli, et al.
Publicado: (2023) -
Joint Beamforming Design for RIS-Assisted Integrated Satellite-HAP-Terrestrial Networks Using Deep Reinforcement Learning
por: Wu, Min, et al.
Publicado: (2023)