Cargando…
Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration
We investigated how altitude affects the decomposition of leaf and root litter in the Andean tropical montane rainforest of southern Ecuador, that is, through changes in the litter quality between altitudes or other site‐specific differences in microenvironmental conditions. Leaf litter from three a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5574766/ https://www.ncbi.nlm.nih.gov/pubmed/28861246 http://dx.doi.org/10.1002/ece3.3189 |
_version_ | 1783259904115474432 |
---|---|
author | Marian, Franca Sandmann, Dorothee Krashevska, Valentyna Maraun, Mark Scheu, Stefan |
author_facet | Marian, Franca Sandmann, Dorothee Krashevska, Valentyna Maraun, Mark Scheu, Stefan |
author_sort | Marian, Franca |
collection | PubMed |
description | We investigated how altitude affects the decomposition of leaf and root litter in the Andean tropical montane rainforest of southern Ecuador, that is, through changes in the litter quality between altitudes or other site‐specific differences in microenvironmental conditions. Leaf litter from three abundant tree species and roots of different diameter from sites at 1,000, 2,000, and 3,000 m were placed in litterbags and incubated for 6, 12, 24, 36, and 48 months. Environmental conditions at the three altitudes and the sampling time were the main factors driving litter decomposition, while origin, and therefore quality of the litter, was of minor importance. At 2,000 and 3,000 m decomposition of litter declined for 12 months reaching a limit value of ~50% of initial and not decomposing further for about 24 months. After 36 months, decomposition commenced at low rates resulting in an average of 37.9% and 44.4% of initial remaining after 48 months. In contrast, at 1,000 m decomposition continued for 48 months until only 10.9% of the initial litter mass remained. Changes in decomposition rates were paralleled by changes in microorganisms with microbial biomass decreasing after 24 months at 2,000 and 3,000 m, while varying little at 1,000 m. The results show that, irrespective of litter origin (1,000, 2,000, 3,000 m) and type (leaves, roots), unfavorable microenvironmental conditions at high altitudes inhibit decomposition processes resulting in the sequestration of carbon in thick organic layers. |
format | Online Article Text |
id | pubmed-5574766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55747662017-08-31 Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration Marian, Franca Sandmann, Dorothee Krashevska, Valentyna Maraun, Mark Scheu, Stefan Ecol Evol Original Research We investigated how altitude affects the decomposition of leaf and root litter in the Andean tropical montane rainforest of southern Ecuador, that is, through changes in the litter quality between altitudes or other site‐specific differences in microenvironmental conditions. Leaf litter from three abundant tree species and roots of different diameter from sites at 1,000, 2,000, and 3,000 m were placed in litterbags and incubated for 6, 12, 24, 36, and 48 months. Environmental conditions at the three altitudes and the sampling time were the main factors driving litter decomposition, while origin, and therefore quality of the litter, was of minor importance. At 2,000 and 3,000 m decomposition of litter declined for 12 months reaching a limit value of ~50% of initial and not decomposing further for about 24 months. After 36 months, decomposition commenced at low rates resulting in an average of 37.9% and 44.4% of initial remaining after 48 months. In contrast, at 1,000 m decomposition continued for 48 months until only 10.9% of the initial litter mass remained. Changes in decomposition rates were paralleled by changes in microorganisms with microbial biomass decreasing after 24 months at 2,000 and 3,000 m, while varying little at 1,000 m. The results show that, irrespective of litter origin (1,000, 2,000, 3,000 m) and type (leaves, roots), unfavorable microenvironmental conditions at high altitudes inhibit decomposition processes resulting in the sequestration of carbon in thick organic layers. John Wiley and Sons Inc. 2017-07-10 /pmc/articles/PMC5574766/ /pubmed/28861246 http://dx.doi.org/10.1002/ece3.3189 Text en © 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Marian, Franca Sandmann, Dorothee Krashevska, Valentyna Maraun, Mark Scheu, Stefan Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration |
title | Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration |
title_full | Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration |
title_fullStr | Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration |
title_full_unstemmed | Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration |
title_short | Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration |
title_sort | leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5574766/ https://www.ncbi.nlm.nih.gov/pubmed/28861246 http://dx.doi.org/10.1002/ece3.3189 |
work_keys_str_mv | AT marianfranca leafandrootlitterdecompositionisdiscontinuedathighaltitudetropicalmontanerainforestscontributingtocarbonsequestration AT sandmanndorothee leafandrootlitterdecompositionisdiscontinuedathighaltitudetropicalmontanerainforestscontributingtocarbonsequestration AT krashevskavalentyna leafandrootlitterdecompositionisdiscontinuedathighaltitudetropicalmontanerainforestscontributingtocarbonsequestration AT maraunmark leafandrootlitterdecompositionisdiscontinuedathighaltitudetropicalmontanerainforestscontributingtocarbonsequestration AT scheustefan leafandrootlitterdecompositionisdiscontinuedathighaltitudetropicalmontanerainforestscontributingtocarbonsequestration |