Cargando…
Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] , where [Formula: see text] , [Formula: see text] , [Formula: se...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575000/ https://www.ncbi.nlm.nih.gov/pubmed/28932099 http://dx.doi.org/10.1186/s13660-017-1473-1 |
_version_ | 1783259948756500480 |
---|---|
author | Yang, Yue-Ying Qian, Wei-Mao |
author_facet | Yang, Yue-Ying Qian, Wei-Mao |
author_sort | Yang, Yue-Ying |
collection | PubMed |
description | In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] , where [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] , [Formula: see text] are the Toader, geometric, arithmetic and two Neuman means of a and b, respectively. |
format | Online Article Text |
id | pubmed-5575000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-55750002017-09-18 Optimal convex combination bounds of geometric and Neuman means for Toader-type mean Yang, Yue-Ying Qian, Wei-Mao J Inequal Appl Research In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] , where [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] , [Formula: see text] are the Toader, geometric, arithmetic and two Neuman means of a and b, respectively. Springer International Publishing 2017-08-29 2017 /pmc/articles/PMC5575000/ /pubmed/28932099 http://dx.doi.org/10.1186/s13660-017-1473-1 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Yang, Yue-Ying Qian, Wei-Mao Optimal convex combination bounds of geometric and Neuman means for Toader-type mean |
title | Optimal convex combination bounds of geometric and Neuman means for Toader-type mean |
title_full | Optimal convex combination bounds of geometric and Neuman means for Toader-type mean |
title_fullStr | Optimal convex combination bounds of geometric and Neuman means for Toader-type mean |
title_full_unstemmed | Optimal convex combination bounds of geometric and Neuman means for Toader-type mean |
title_short | Optimal convex combination bounds of geometric and Neuman means for Toader-type mean |
title_sort | optimal convex combination bounds of geometric and neuman means for toader-type mean |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575000/ https://www.ncbi.nlm.nih.gov/pubmed/28932099 http://dx.doi.org/10.1186/s13660-017-1473-1 |
work_keys_str_mv | AT yangyueying optimalconvexcombinationboundsofgeometricandneumanmeansfortoadertypemean AT qianweimao optimalconvexcombinationboundsofgeometricandneumanmeansfortoadertypemean |