Cargando…

Optimal convex combination bounds of geometric and Neuman means for Toader-type mean

In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text] , [Formula: see text]  , [Formula: see text] and [Formula: see text]  , where [Formula: see text] , [Formula: see text] , [Formula: se...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yue-Ying, Qian, Wei-Mao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575000/
https://www.ncbi.nlm.nih.gov/pubmed/28932099
http://dx.doi.org/10.1186/s13660-017-1473-1
_version_ 1783259948756500480
author Yang, Yue-Ying
Qian, Wei-Mao
author_facet Yang, Yue-Ying
Qian, Wei-Mao
author_sort Yang, Yue-Ying
collection PubMed
description In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text] , [Formula: see text]  , [Formula: see text] and [Formula: see text]  , where [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] , [Formula: see text] are the Toader, geometric, arithmetic and two Neuman means of a and b, respectively.
format Online
Article
Text
id pubmed-5575000
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-55750002017-09-18 Optimal convex combination bounds of geometric and Neuman means for Toader-type mean Yang, Yue-Ying Qian, Wei-Mao J Inequal Appl Research In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text] , [Formula: see text]  , [Formula: see text] and [Formula: see text]  , where [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] , [Formula: see text] are the Toader, geometric, arithmetic and two Neuman means of a and b, respectively. Springer International Publishing 2017-08-29 2017 /pmc/articles/PMC5575000/ /pubmed/28932099 http://dx.doi.org/10.1186/s13660-017-1473-1 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Yang, Yue-Ying
Qian, Wei-Mao
Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
title Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
title_full Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
title_fullStr Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
title_full_unstemmed Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
title_short Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
title_sort optimal convex combination bounds of geometric and neuman means for toader-type mean
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575000/
https://www.ncbi.nlm.nih.gov/pubmed/28932099
http://dx.doi.org/10.1186/s13660-017-1473-1
work_keys_str_mv AT yangyueying optimalconvexcombinationboundsofgeometricandneumanmeansfortoadertypemean
AT qianweimao optimalconvexcombinationboundsofgeometricandneumanmeansfortoadertypemean