Cargando…
Automated Classification of Benign and Malignant Proliferative Breast Lesions
Misclassification of breast lesions can result in either cancer progression or unnecessary chemotherapy. Automated classification tools are seen as promising second opinion providers in reducing such errors. We have developed predictive algorithms that automate the categorization of breast lesions a...
Autores principales: | Radiya-Dixit, Evani, Zhu, David, Beck, Andrew H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575012/ https://www.ncbi.nlm.nih.gov/pubmed/28852119 http://dx.doi.org/10.1038/s41598-017-10324-y |
Ejemplares similares
-
Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions
por: Dhahri, Habib, et al.
Publicado: (2020) -
Corrigendum to “Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions”
por: Dhahri, Habib, et al.
Publicado: (2020) -
Automated Classification of Malignant and Benign Breast Cancer
Lesions Using Neural Networks on Digitized Mammograms
por: Abdelsamea, Mohammed M, et al.
Publicado: (2019) -
Combined use of the automated breast volume scanner and the US elastography for the differentiation of benign from malignant lesions of the breast
por: Xu, Chaoli, et al.
Publicado: (2014) -
Detection of benign proliferative lesions on vocal cords with voice handicap index
por: HUANG, XUEKUN, et al.
Publicado: (2012)