Cargando…

Enhanced spectral profile in the study of Doppler-broadened Rydberg ensembles

Combination of the electromagnetically-induced-transparency (EIT) effect and Rydberg-state atoms has attracted great attention recently due to its potential application in the photon-photon interaction or qubit operation. In this work, we studied the Rydberg-EIT spectra with room-temperature (87)Rb...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Bo-Han, Chuang, Ya-Wen, Chen, Yi-Hsin, Yu, Jr-Chiun, Chang, Ming-Shien, Yu, Ite A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575013/
https://www.ncbi.nlm.nih.gov/pubmed/28852012
http://dx.doi.org/10.1038/s41598-017-09953-0
Descripción
Sumario:Combination of the electromagnetically-induced-transparency (EIT) effect and Rydberg-state atoms has attracted great attention recently due to its potential application in the photon-photon interaction or qubit operation. In this work, we studied the Rydberg-EIT spectra with room-temperature (87)Rb atoms. Spectroscopic data under various experimental parameters all showed that the contrast of EIT transparency as a function of the probe field intensity is initially enhanced, reaches a maximum value and then decays gradually. The contrast of spectral profile at the optimum probe field intensity is enhanced by 2–4 times as compared with that at weakest intensity. Moreover, the signal-to-noise ratio of the spectrum can potentially be improved by 1 to 2 orders of magnitude. We provided a theoretical model to explain this behavior and clarified its underlying mechanism. Our work overcomes the obstacle of weak signal in the Rydberg-EIT spectrum caused by an apparent relaxation rate of the Rydberg polariton and weak coupling transition strength, and provides the useful knowledge for the Rydberg-EIT study.