Cargando…

Tunable odd-frequency triplet pairing states and skyrmion modes in chiral p-wave superconductor

Bogliubov-de Gennes equations are solved self-consistently to investigate the properties of bound states in chiral p-wave superconductive disks. It shows that either an s-wave or the mixed d- and s-wave state with odd-frequency and spin-triplet symmetry is induced at the vortex core, depending both...

Descripción completa

Detalles Bibliográficos
Autores principales: Lou, Yu-Feng, Wen, Lin, Zha, Guo-Qiao, Zhou, Shi-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575086/
https://www.ncbi.nlm.nih.gov/pubmed/28852054
http://dx.doi.org/10.1038/s41598-017-10152-0
Descripción
Sumario:Bogliubov-de Gennes equations are solved self-consistently to investigate the properties of bound states in chiral p-wave superconductive disks. It shows that either an s-wave or the mixed d- and s-wave state with odd-frequency and spin-triplet symmetry is induced at the vortex core, depending both on the chirality of the pairing states and on the vortex topology. It is also found that the odd-frequency triplet even parity (OTE) bound state can be manipulated with a local non-magnetic potential. Interestingly, with an appropriate potential amplitude, the zero-energy OTE bound state can be stabilized at a distance from the vortex core and from the local potential. Possible existences of the Majorana fermion modes are expected if the particle-hole symmetry property is applied to the zero-energy OTE bound state. Moreover, skyrmion modes with an integer topological charge have been found to exist.