Cargando…

The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose

The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly cry...

Descripción completa

Detalles Bibliográficos
Autores principales: Brunecky, Roman, Donohoe, Bryon S., Yarbrough, John M., Mittal, Ashutosh, Scott, Brian R., Ding, Hanshu, Taylor II, Larry E., Russell, Jordan F., Chung, Daehwan, Westpheling, Janet, Teter, Sarah A., Himmel, Michael E., Bomble, Yannick J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575103/
https://www.ncbi.nlm.nih.gov/pubmed/28851921
http://dx.doi.org/10.1038/s41598-017-08985-w
_version_ 1783259973243895808
author Brunecky, Roman
Donohoe, Bryon S.
Yarbrough, John M.
Mittal, Ashutosh
Scott, Brian R.
Ding, Hanshu
Taylor II, Larry E.
Russell, Jordan F.
Chung, Daehwan
Westpheling, Janet
Teter, Sarah A.
Himmel, Michael E.
Bomble, Yannick J.
author_facet Brunecky, Roman
Donohoe, Bryon S.
Yarbrough, John M.
Mittal, Ashutosh
Scott, Brian R.
Ding, Hanshu
Taylor II, Larry E.
Russell, Jordan F.
Chung, Daehwan
Westpheling, Janet
Teter, Sarah A.
Himmel, Michael E.
Bomble, Yannick J.
author_sort Brunecky, Roman
collection PubMed
description The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly crystalline cellulosic substrates. We have demonstrated that the CelA cellulase from Caldicellulosiruptor bescii degrades highly crystalline cellulose as well as low crystallinity substrates making it the only known cellulase to function well on highly crystalline cellulose. Unlike the secretomes of cellulolytic fungi, which typically comprise multiple, single catalytic domain enzymes for biomass degradation, some bacterial systems employ an alternative strategy that utilizes multi-catalytic domain cellulases. Additionally, CelA is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Furthermore we have determined that the factors negatively affecting digestion of lignocellulosic materials by C. bescii enzyme cocktails containing CelA appear to be significantly different from the performance barriers affecting fungal cellulases. Here, we explore the activity and degradation mechanism of CelA on a variety of pretreated substrates to better understand how the different bulk components of biomass, such as xylan and lignin, impact its performance.
format Online
Article
Text
id pubmed-5575103
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-55751032017-09-01 The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose Brunecky, Roman Donohoe, Bryon S. Yarbrough, John M. Mittal, Ashutosh Scott, Brian R. Ding, Hanshu Taylor II, Larry E. Russell, Jordan F. Chung, Daehwan Westpheling, Janet Teter, Sarah A. Himmel, Michael E. Bomble, Yannick J. Sci Rep Article The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly crystalline cellulosic substrates. We have demonstrated that the CelA cellulase from Caldicellulosiruptor bescii degrades highly crystalline cellulose as well as low crystallinity substrates making it the only known cellulase to function well on highly crystalline cellulose. Unlike the secretomes of cellulolytic fungi, which typically comprise multiple, single catalytic domain enzymes for biomass degradation, some bacterial systems employ an alternative strategy that utilizes multi-catalytic domain cellulases. Additionally, CelA is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Furthermore we have determined that the factors negatively affecting digestion of lignocellulosic materials by C. bescii enzyme cocktails containing CelA appear to be significantly different from the performance barriers affecting fungal cellulases. Here, we explore the activity and degradation mechanism of CelA on a variety of pretreated substrates to better understand how the different bulk components of biomass, such as xylan and lignin, impact its performance. Nature Publishing Group UK 2017-08-29 /pmc/articles/PMC5575103/ /pubmed/28851921 http://dx.doi.org/10.1038/s41598-017-08985-w Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Brunecky, Roman
Donohoe, Bryon S.
Yarbrough, John M.
Mittal, Ashutosh
Scott, Brian R.
Ding, Hanshu
Taylor II, Larry E.
Russell, Jordan F.
Chung, Daehwan
Westpheling, Janet
Teter, Sarah A.
Himmel, Michael E.
Bomble, Yannick J.
The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose
title The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose
title_full The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose
title_fullStr The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose
title_full_unstemmed The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose
title_short The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose
title_sort multi domain caldicellulosiruptor bescii cela cellulase excels at the hydrolysis of crystalline cellulose
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575103/
https://www.ncbi.nlm.nih.gov/pubmed/28851921
http://dx.doi.org/10.1038/s41598-017-08985-w
work_keys_str_mv AT bruneckyroman themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT donohoebryons themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT yarbroughjohnm themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT mittalashutosh themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT scottbrianr themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT dinghanshu themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT tayloriilarrye themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT russelljordanf themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT chungdaehwan themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT westphelingjanet themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT tetersaraha themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT himmelmichaele themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT bombleyannickj themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT bruneckyroman multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT donohoebryons multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT yarbroughjohnm multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT mittalashutosh multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT scottbrianr multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT dinghanshu multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT tayloriilarrye multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT russelljordanf multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT chungdaehwan multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT westphelingjanet multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT tetersaraha multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT himmelmichaele multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose
AT bombleyannickj multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose