Cargando…
The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose
The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly cry...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575103/ https://www.ncbi.nlm.nih.gov/pubmed/28851921 http://dx.doi.org/10.1038/s41598-017-08985-w |
_version_ | 1783259973243895808 |
---|---|
author | Brunecky, Roman Donohoe, Bryon S. Yarbrough, John M. Mittal, Ashutosh Scott, Brian R. Ding, Hanshu Taylor II, Larry E. Russell, Jordan F. Chung, Daehwan Westpheling, Janet Teter, Sarah A. Himmel, Michael E. Bomble, Yannick J. |
author_facet | Brunecky, Roman Donohoe, Bryon S. Yarbrough, John M. Mittal, Ashutosh Scott, Brian R. Ding, Hanshu Taylor II, Larry E. Russell, Jordan F. Chung, Daehwan Westpheling, Janet Teter, Sarah A. Himmel, Michael E. Bomble, Yannick J. |
author_sort | Brunecky, Roman |
collection | PubMed |
description | The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly crystalline cellulosic substrates. We have demonstrated that the CelA cellulase from Caldicellulosiruptor bescii degrades highly crystalline cellulose as well as low crystallinity substrates making it the only known cellulase to function well on highly crystalline cellulose. Unlike the secretomes of cellulolytic fungi, which typically comprise multiple, single catalytic domain enzymes for biomass degradation, some bacterial systems employ an alternative strategy that utilizes multi-catalytic domain cellulases. Additionally, CelA is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Furthermore we have determined that the factors negatively affecting digestion of lignocellulosic materials by C. bescii enzyme cocktails containing CelA appear to be significantly different from the performance barriers affecting fungal cellulases. Here, we explore the activity and degradation mechanism of CelA on a variety of pretreated substrates to better understand how the different bulk components of biomass, such as xylan and lignin, impact its performance. |
format | Online Article Text |
id | pubmed-5575103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-55751032017-09-01 The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose Brunecky, Roman Donohoe, Bryon S. Yarbrough, John M. Mittal, Ashutosh Scott, Brian R. Ding, Hanshu Taylor II, Larry E. Russell, Jordan F. Chung, Daehwan Westpheling, Janet Teter, Sarah A. Himmel, Michael E. Bomble, Yannick J. Sci Rep Article The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly crystalline cellulosic substrates. We have demonstrated that the CelA cellulase from Caldicellulosiruptor bescii degrades highly crystalline cellulose as well as low crystallinity substrates making it the only known cellulase to function well on highly crystalline cellulose. Unlike the secretomes of cellulolytic fungi, which typically comprise multiple, single catalytic domain enzymes for biomass degradation, some bacterial systems employ an alternative strategy that utilizes multi-catalytic domain cellulases. Additionally, CelA is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Furthermore we have determined that the factors negatively affecting digestion of lignocellulosic materials by C. bescii enzyme cocktails containing CelA appear to be significantly different from the performance barriers affecting fungal cellulases. Here, we explore the activity and degradation mechanism of CelA on a variety of pretreated substrates to better understand how the different bulk components of biomass, such as xylan and lignin, impact its performance. Nature Publishing Group UK 2017-08-29 /pmc/articles/PMC5575103/ /pubmed/28851921 http://dx.doi.org/10.1038/s41598-017-08985-w Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Brunecky, Roman Donohoe, Bryon S. Yarbrough, John M. Mittal, Ashutosh Scott, Brian R. Ding, Hanshu Taylor II, Larry E. Russell, Jordan F. Chung, Daehwan Westpheling, Janet Teter, Sarah A. Himmel, Michael E. Bomble, Yannick J. The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose |
title | The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose |
title_full | The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose |
title_fullStr | The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose |
title_full_unstemmed | The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose |
title_short | The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose |
title_sort | multi domain caldicellulosiruptor bescii cela cellulase excels at the hydrolysis of crystalline cellulose |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575103/ https://www.ncbi.nlm.nih.gov/pubmed/28851921 http://dx.doi.org/10.1038/s41598-017-08985-w |
work_keys_str_mv | AT bruneckyroman themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT donohoebryons themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT yarbroughjohnm themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT mittalashutosh themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT scottbrianr themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT dinghanshu themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT tayloriilarrye themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT russelljordanf themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT chungdaehwan themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT westphelingjanet themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT tetersaraha themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT himmelmichaele themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT bombleyannickj themultidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT bruneckyroman multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT donohoebryons multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT yarbroughjohnm multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT mittalashutosh multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT scottbrianr multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT dinghanshu multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT tayloriilarrye multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT russelljordanf multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT chungdaehwan multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT westphelingjanet multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT tetersaraha multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT himmelmichaele multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose AT bombleyannickj multidomaincaldicellulosiruptorbesciicelacellulaseexcelsatthehydrolysisofcrystallinecellulose |