Cargando…

Neural glycoprotein M6a is released in extracellular vesicles and modulated by chronic stressors in blood

Membrane neuronal glycoprotein M6a is highly expressed in the brain and contributes to neural plasticity promoting neurite growth and spine and synapse formation. We have previously showed that chronic stressors alter hippocampal M6a mRNA levels in rodents and tree shrews. We now show that M6a glyco...

Descripción completa

Detalles Bibliográficos
Autores principales: Monteleone, Melisa C., Billi, Silvia C., Brocco, Marcela A., Frasch, Alberto C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575271/
https://www.ncbi.nlm.nih.gov/pubmed/28851962
http://dx.doi.org/10.1038/s41598-017-09713-0
Descripción
Sumario:Membrane neuronal glycoprotein M6a is highly expressed in the brain and contributes to neural plasticity promoting neurite growth and spine and synapse formation. We have previously showed that chronic stressors alter hippocampal M6a mRNA levels in rodents and tree shrews. We now show that M6a glycoprotein can be detected in mouse blood. M6a is a transmembrane glycoprotein and, as such, unlikely to be free in blood. Here we demonstrate that, in blood, M6a is transported in extracellular vesicles (EVs). It is also shown that M6a-containing EVs are delivered from cultured primary neurons as well as from M6a-transfected COS-7 cells. Released EVs containing M6a can be incorporated into COS-7 cells changing its phenotype through formation of membrane protrusions. Thus, M6a-containing EVs might contribute to maintain cellular plasticity. M6a presence in blood was used to monitor stress effects. Chronic restraint stress modulated M6a protein level in a sex dependent manner. Analysis of individual animals indicated that M6a level variations depend on the stressor applied. The response to stressors in blood makes M6a amenable to further studies in the stress disorder field.