Cargando…
Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries
PURPOSE: Tools for survival prediction for non-small cell lung cancer (NSCLC) patients treated with chemoradiation or radiation therapy are of limited quality. In this work, we developed a predictive model of survival at 2 years. The model is based on a large volume of historical patient data and se...
Autores principales: | Jochems, Arthur, Deist, Timo M., El Naqa, Issam, Kessler, Marc, Mayo, Chuck, Reeves, Jackson, Jolly, Shruti, Matuszak, Martha, Ten Haken, Randall, van Soest, Johan, Oberije, Cary, Faivre-Finn, Corinne, Price, Gareth, de Ruysscher, Dirk, Lambin, Philippe, Dekker, Andre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Inc
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575360/ https://www.ncbi.nlm.nih.gov/pubmed/28871984 http://dx.doi.org/10.1016/j.ijrobp.2017.04.021 |
Ejemplares similares
-
A prediction model for early death in non-small cell lung cancer patients following curative-intent chemoradiotherapy
por: Jochems, Arthur, et al.
Publicado: (2017) -
Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT
por: Deist, Timo M., et al.
Publicado: (2017) -
Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy
por: Niraula, Dipesh, et al.
Publicado: (2021) -
Author Correction: Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy
por: Niraula, Dipesh, et al.
Publicado: (2023) -
Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers
por: Deist, Timo M., et al.
Publicado: (2018)