Cargando…

Energy Transfer between Spatially Separated Entangled Molecules

Light–matter strong coupling allows for the possibility of entangling the wave functions of different molecules through the light field. We hereby present direct evidence of non‐radiative energy transfer well beyond the Förster limit for spatially separated donor and acceptor cyanine dyes strongly c...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Xiaolan, Chervy, Thibault, Zhang, Lei, Thomas, Anoop, George, Jino, Genet, Cyriaque, Hutchison, James A., Ebbesen, Thomas W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575472/
https://www.ncbi.nlm.nih.gov/pubmed/28598527
http://dx.doi.org/10.1002/anie.201703539
Descripción
Sumario:Light–matter strong coupling allows for the possibility of entangling the wave functions of different molecules through the light field. We hereby present direct evidence of non‐radiative energy transfer well beyond the Förster limit for spatially separated donor and acceptor cyanine dyes strongly coupled to a cavity. The transient dynamics and the static spectra show an energy transfer efficiency approaching 37 % for donor–acceptor distances ≥100 nm. In such systems, the energy transfer process becomes independent of distance as long as the coupling strength is maintained. This is consistent with the entangled and delocalized nature of the polaritonic states.