Cargando…

Computational approaches for interpreting scRNA‐seq data

The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we c...

Descripción completa

Detalles Bibliográficos
Autores principales: Rostom, Raghd, Svensson, Valentine, Teichmann, Sarah A., Kar, Gozde
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575496/
https://www.ncbi.nlm.nih.gov/pubmed/28524227
http://dx.doi.org/10.1002/1873-3468.12684
_version_ 1783260058219446272
author Rostom, Raghd
Svensson, Valentine
Teichmann, Sarah A.
Kar, Gozde
author_facet Rostom, Raghd
Svensson, Valentine
Teichmann, Sarah A.
Kar, Gozde
author_sort Rostom, Raghd
collection PubMed
description The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we consider biological questions for which scRNA‐seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene‐level analyses are particularly informative areas of computational analysis.
format Online
Article
Text
id pubmed-5575496
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-55754962017-09-18 Computational approaches for interpreting scRNA‐seq data Rostom, Raghd Svensson, Valentine Teichmann, Sarah A. Kar, Gozde FEBS Lett Review Articles The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we consider biological questions for which scRNA‐seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene‐level analyses are particularly informative areas of computational analysis. John Wiley and Sons Inc. 2017-06-12 2017-08 /pmc/articles/PMC5575496/ /pubmed/28524227 http://dx.doi.org/10.1002/1873-3468.12684 Text en © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review Articles
Rostom, Raghd
Svensson, Valentine
Teichmann, Sarah A.
Kar, Gozde
Computational approaches for interpreting scRNA‐seq data
title Computational approaches for interpreting scRNA‐seq data
title_full Computational approaches for interpreting scRNA‐seq data
title_fullStr Computational approaches for interpreting scRNA‐seq data
title_full_unstemmed Computational approaches for interpreting scRNA‐seq data
title_short Computational approaches for interpreting scRNA‐seq data
title_sort computational approaches for interpreting scrna‐seq data
topic Review Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575496/
https://www.ncbi.nlm.nih.gov/pubmed/28524227
http://dx.doi.org/10.1002/1873-3468.12684
work_keys_str_mv AT rostomraghd computationalapproachesforinterpretingscrnaseqdata
AT svenssonvalentine computationalapproachesforinterpretingscrnaseqdata
AT teichmannsaraha computationalapproachesforinterpretingscrnaseqdata
AT kargozde computationalapproachesforinterpretingscrnaseqdata