Cargando…
Computational approaches for interpreting scRNA‐seq data
The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575496/ https://www.ncbi.nlm.nih.gov/pubmed/28524227 http://dx.doi.org/10.1002/1873-3468.12684 |
_version_ | 1783260058219446272 |
---|---|
author | Rostom, Raghd Svensson, Valentine Teichmann, Sarah A. Kar, Gozde |
author_facet | Rostom, Raghd Svensson, Valentine Teichmann, Sarah A. Kar, Gozde |
author_sort | Rostom, Raghd |
collection | PubMed |
description | The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we consider biological questions for which scRNA‐seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene‐level analyses are particularly informative areas of computational analysis. |
format | Online Article Text |
id | pubmed-5575496 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55754962017-09-18 Computational approaches for interpreting scRNA‐seq data Rostom, Raghd Svensson, Valentine Teichmann, Sarah A. Kar, Gozde FEBS Lett Review Articles The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we consider biological questions for which scRNA‐seq data is used, both at a cell and gene level, and describe tools available for these types of analyses. This is an exciting and rapidly evolving field, where clustering, pseudotime inference, branching inference and gene‐level analyses are particularly informative areas of computational analysis. John Wiley and Sons Inc. 2017-06-12 2017-08 /pmc/articles/PMC5575496/ /pubmed/28524227 http://dx.doi.org/10.1002/1873-3468.12684 Text en © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Articles Rostom, Raghd Svensson, Valentine Teichmann, Sarah A. Kar, Gozde Computational approaches for interpreting scRNA‐seq data |
title | Computational approaches for interpreting scRNA‐seq data |
title_full | Computational approaches for interpreting scRNA‐seq data |
title_fullStr | Computational approaches for interpreting scRNA‐seq data |
title_full_unstemmed | Computational approaches for interpreting scRNA‐seq data |
title_short | Computational approaches for interpreting scRNA‐seq data |
title_sort | computational approaches for interpreting scrna‐seq data |
topic | Review Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575496/ https://www.ncbi.nlm.nih.gov/pubmed/28524227 http://dx.doi.org/10.1002/1873-3468.12684 |
work_keys_str_mv | AT rostomraghd computationalapproachesforinterpretingscrnaseqdata AT svenssonvalentine computationalapproachesforinterpretingscrnaseqdata AT teichmannsaraha computationalapproachesforinterpretingscrnaseqdata AT kargozde computationalapproachesforinterpretingscrnaseqdata |