Cargando…
Computational approaches for interpreting scRNA‐seq data
The recent developments in high‐throughput single‐cell RNA sequencing technology (scRNA‐seq) have enabled the generation of vast amounts of transcriptomic data at cellular resolution. With these advances come new modes of data analysis, building on high‐dimensional data mining techniques. Here, we c...
Autores principales: | Rostom, Raghd, Svensson, Valentine, Teichmann, Sarah A., Kar, Gozde |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575496/ https://www.ncbi.nlm.nih.gov/pubmed/28524227 http://dx.doi.org/10.1002/1873-3468.12684 |
Ejemplares similares
-
Cerebro: interactive visualization of scRNA-seq data
por: Hillje, Roman, et al.
Publicado: (2020) -
ScRNA-seq and ST-seq in liver research
por: He, Jia, et al.
Publicado: (2023) -
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
por: Wang, HaiYun, et al.
Publicado: (2022) -
Contrastive self-supervised clustering of scRNA-seq data
por: Ciortan, Madalina, et al.
Publicado: (2021) -
Domain adaptation for supervised integration of scRNA-seq data
por: Sun, Yutong, et al.
Publicado: (2023)