Cargando…
Mutation Clusters from Cancer Exome
We apply our statistically deterministic machine learning/clustering algorithm *K-means (recently developed in https://ssrn.com/abstract=2908286) to 10,656 published exome samples for 32 cancer types. A majority of cancer types exhibit a mutation clustering structure. Our results are in-sample stabl...
Autores principales: | Kakushadze, Zura, Yu, Willie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575665/ https://www.ncbi.nlm.nih.gov/pubmed/28809811 http://dx.doi.org/10.3390/genes8080201 |
Ejemplares similares
-
*K-means and cluster models for cancer signatures
por: Kakushadze, Zura, et al.
Publicado: (2017) -
Dynamical Flavor Hierarchy and Heavy Top
por: Dvali, Gia, et al.
Publicado: (1997) -
Pathway Mutations in Breast Cancer Using Whole-Exome Sequencing
por: Chang, Ya-Sian, et al.
Publicado: (2020) -
A Remark on Dilaton Stabilization
por: Dvali, G.R., et al.
Publicado: (1997) -
Whole-exome sequencing identifies prognostic mutational signatures in gastric cancer
por: Zhu, Zhenxin, et al.
Publicado: (2020)