Cargando…

Reference Equations for the Six-Minute Walk Distance in the Healthy Chinese Han Population, Aged 18–30 Years

BACKGROUND: The six-minute walk test (6MWT) is a safe, simple, inexpensive tool for evaluating the functional exercise capacity. However, there is a lack of standard reference equations for the six-minute walk distance (6MWD) in the healthy Chinese Han population with an age of 18–30 years. The aims...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, He, Zhang, Jia, Chen, Xiaoshu, Wang, Yi, Lin, Wei, Lin, Jianfeng, Chen, Hao, Pan, Jingye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576235/
https://www.ncbi.nlm.nih.gov/pubmed/28851335
http://dx.doi.org/10.1186/s12890-017-0461-z
_version_ 1783260160871890944
author Zou, He
Zhang, Jia
Chen, Xiaoshu
Wang, Yi
Lin, Wei
Lin, Jianfeng
Chen, Hao
Pan, Jingye
author_facet Zou, He
Zhang, Jia
Chen, Xiaoshu
Wang, Yi
Lin, Wei
Lin, Jianfeng
Chen, Hao
Pan, Jingye
author_sort Zou, He
collection PubMed
description BACKGROUND: The six-minute walk test (6MWT) is a safe, simple, inexpensive tool for evaluating the functional exercise capacity. However, there is a lack of standard reference equations for the six-minute walk distance (6MWD) in the healthy Chinese Han population with an age of 18–30 years. The aims of the present study were as follows: 1) to measure the anthropometric data and the walking distance in a sample of healthy Chinese Han population, aged 18–30 years; 2) to construct reference equations for the 6MWD; 3) to compare the measured 6MWD of our cohort with previously published equations. METHODS: The anthropometric data, demographic, lung function and the walking distance of Chinese Han population, aged 18–30 years, were prospectively measured using a standardized protocol. Informed consent was obtained from each participant and the approval was obtained from the ethics committee of Wenzhou People’s Hospital. The 6MWT was performed twice and the longer 6MWD was used for further analysis. RESULTS: A total of 355 subjects (176 female and 179 male) completed the 6MWT, and the average walking distance was 627.3 ± 52.88 m. The walking distance was achieved by females compared with males (607.4 ± 51.00 m vs. 646.9 ± 47.15 m; p < 0.0001) and active subjects compared with non-active subjects (646.1 ± 48.27 m vs. 611.6 ± 51.52 m; p < 0.0001). Univariate analysis showed age, height, body mass index, resting blood pressure, heart rate and blood pressure after the walk test and difference in heart rate before and after the walk test were significantly correlated with the 6MWD. Stepwise multiple regression analysis showed that height and difference in heart rate before and after the walk test were independent predictors associated with the 6MWD. The reference equations from Caucasian, Canadian and Chilean populations tend to overestimate the walking distance in our subjects, while Brazilian and Arabian equations tend to underestimate the walking distance. There was no significant difference in the walking distance between Korean equations and the current study. CONCLUSION: In summary, height and difference in heart rate before and after the walk test were the most significant predictors of the 6MWD, and the regression equations could explain approximately 38% and 31% of the distance variance in the female and male groups, respectively.
format Online
Article
Text
id pubmed-5576235
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-55762352017-08-30 Reference Equations for the Six-Minute Walk Distance in the Healthy Chinese Han Population, Aged 18–30 Years Zou, He Zhang, Jia Chen, Xiaoshu Wang, Yi Lin, Wei Lin, Jianfeng Chen, Hao Pan, Jingye BMC Pulm Med Research Article BACKGROUND: The six-minute walk test (6MWT) is a safe, simple, inexpensive tool for evaluating the functional exercise capacity. However, there is a lack of standard reference equations for the six-minute walk distance (6MWD) in the healthy Chinese Han population with an age of 18–30 years. The aims of the present study were as follows: 1) to measure the anthropometric data and the walking distance in a sample of healthy Chinese Han population, aged 18–30 years; 2) to construct reference equations for the 6MWD; 3) to compare the measured 6MWD of our cohort with previously published equations. METHODS: The anthropometric data, demographic, lung function and the walking distance of Chinese Han population, aged 18–30 years, were prospectively measured using a standardized protocol. Informed consent was obtained from each participant and the approval was obtained from the ethics committee of Wenzhou People’s Hospital. The 6MWT was performed twice and the longer 6MWD was used for further analysis. RESULTS: A total of 355 subjects (176 female and 179 male) completed the 6MWT, and the average walking distance was 627.3 ± 52.88 m. The walking distance was achieved by females compared with males (607.4 ± 51.00 m vs. 646.9 ± 47.15 m; p < 0.0001) and active subjects compared with non-active subjects (646.1 ± 48.27 m vs. 611.6 ± 51.52 m; p < 0.0001). Univariate analysis showed age, height, body mass index, resting blood pressure, heart rate and blood pressure after the walk test and difference in heart rate before and after the walk test were significantly correlated with the 6MWD. Stepwise multiple regression analysis showed that height and difference in heart rate before and after the walk test were independent predictors associated with the 6MWD. The reference equations from Caucasian, Canadian and Chilean populations tend to overestimate the walking distance in our subjects, while Brazilian and Arabian equations tend to underestimate the walking distance. There was no significant difference in the walking distance between Korean equations and the current study. CONCLUSION: In summary, height and difference in heart rate before and after the walk test were the most significant predictors of the 6MWD, and the regression equations could explain approximately 38% and 31% of the distance variance in the female and male groups, respectively. BioMed Central 2017-08-29 /pmc/articles/PMC5576235/ /pubmed/28851335 http://dx.doi.org/10.1186/s12890-017-0461-z Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Zou, He
Zhang, Jia
Chen, Xiaoshu
Wang, Yi
Lin, Wei
Lin, Jianfeng
Chen, Hao
Pan, Jingye
Reference Equations for the Six-Minute Walk Distance in the Healthy Chinese Han Population, Aged 18–30 Years
title Reference Equations for the Six-Minute Walk Distance in the Healthy Chinese Han Population, Aged 18–30 Years
title_full Reference Equations for the Six-Minute Walk Distance in the Healthy Chinese Han Population, Aged 18–30 Years
title_fullStr Reference Equations for the Six-Minute Walk Distance in the Healthy Chinese Han Population, Aged 18–30 Years
title_full_unstemmed Reference Equations for the Six-Minute Walk Distance in the Healthy Chinese Han Population, Aged 18–30 Years
title_short Reference Equations for the Six-Minute Walk Distance in the Healthy Chinese Han Population, Aged 18–30 Years
title_sort reference equations for the six-minute walk distance in the healthy chinese han population, aged 18–30 years
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576235/
https://www.ncbi.nlm.nih.gov/pubmed/28851335
http://dx.doi.org/10.1186/s12890-017-0461-z
work_keys_str_mv AT zouhe referenceequationsforthesixminutewalkdistanceinthehealthychinesehanpopulationaged1830years
AT zhangjia referenceequationsforthesixminutewalkdistanceinthehealthychinesehanpopulationaged1830years
AT chenxiaoshu referenceequationsforthesixminutewalkdistanceinthehealthychinesehanpopulationaged1830years
AT wangyi referenceequationsforthesixminutewalkdistanceinthehealthychinesehanpopulationaged1830years
AT linwei referenceequationsforthesixminutewalkdistanceinthehealthychinesehanpopulationaged1830years
AT linjianfeng referenceequationsforthesixminutewalkdistanceinthehealthychinesehanpopulationaged1830years
AT chenhao referenceequationsforthesixminutewalkdistanceinthehealthychinesehanpopulationaged1830years
AT panjingye referenceequationsforthesixminutewalkdistanceinthehealthychinesehanpopulationaged1830years