Cargando…

Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters

BACKGROUND: The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis o...

Descripción completa

Detalles Bibliográficos
Autores principales: Dallery, Jean-Félix, Lapalu, Nicolas, Zampounis, Antonios, Pigné, Sandrine, Luyten, Isabelle, Amselem, Joëlle, Wittenberg, Alexander H. J., Zhou, Shiguo, de Queiroz, Marisa V., Robin, Guillaume P., Auger, Annie, Hainaut, Matthieu, Henrissat, Bernard, Kim, Ki-Tae, Lee, Yong-Hwan, Lespinet, Olivier, Schwartz, David C., Thon, Michael R., O’Connell, Richard J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576322/
https://www.ncbi.nlm.nih.gov/pubmed/28851275
http://dx.doi.org/10.1186/s12864-017-4083-x
_version_ 1783260180393230336
author Dallery, Jean-Félix
Lapalu, Nicolas
Zampounis, Antonios
Pigné, Sandrine
Luyten, Isabelle
Amselem, Joëlle
Wittenberg, Alexander H. J.
Zhou, Shiguo
de Queiroz, Marisa V.
Robin, Guillaume P.
Auger, Annie
Hainaut, Matthieu
Henrissat, Bernard
Kim, Ki-Tae
Lee, Yong-Hwan
Lespinet, Olivier
Schwartz, David C.
Thon, Michael R.
O’Connell, Richard J.
author_facet Dallery, Jean-Félix
Lapalu, Nicolas
Zampounis, Antonios
Pigné, Sandrine
Luyten, Isabelle
Amselem, Joëlle
Wittenberg, Alexander H. J.
Zhou, Shiguo
de Queiroz, Marisa V.
Robin, Guillaume P.
Auger, Annie
Hainaut, Matthieu
Henrissat, Bernard
Kim, Ki-Tae
Lee, Yong-Hwan
Lespinet, Olivier
Schwartz, David C.
Thon, Michael R.
O’Connell, Richard J.
author_sort Dallery, Jean-Félix
collection PubMed
description BACKGROUND: The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. RESULTS: Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. CONCLUSION: The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-017-4083-x) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5576322
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-55763222017-08-31 Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters Dallery, Jean-Félix Lapalu, Nicolas Zampounis, Antonios Pigné, Sandrine Luyten, Isabelle Amselem, Joëlle Wittenberg, Alexander H. J. Zhou, Shiguo de Queiroz, Marisa V. Robin, Guillaume P. Auger, Annie Hainaut, Matthieu Henrissat, Bernard Kim, Ki-Tae Lee, Yong-Hwan Lespinet, Olivier Schwartz, David C. Thon, Michael R. O’Connell, Richard J. BMC Genomics Research Article BACKGROUND: The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. RESULTS: Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. CONCLUSION: The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-017-4083-x) contains supplementary material, which is available to authorized users. BioMed Central 2017-08-29 /pmc/articles/PMC5576322/ /pubmed/28851275 http://dx.doi.org/10.1186/s12864-017-4083-x Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Dallery, Jean-Félix
Lapalu, Nicolas
Zampounis, Antonios
Pigné, Sandrine
Luyten, Isabelle
Amselem, Joëlle
Wittenberg, Alexander H. J.
Zhou, Shiguo
de Queiroz, Marisa V.
Robin, Guillaume P.
Auger, Annie
Hainaut, Matthieu
Henrissat, Bernard
Kim, Ki-Tae
Lee, Yong-Hwan
Lespinet, Olivier
Schwartz, David C.
Thon, Michael R.
O’Connell, Richard J.
Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters
title Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters
title_full Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters
title_fullStr Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters
title_full_unstemmed Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters
title_short Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters
title_sort gapless genome assembly of colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576322/
https://www.ncbi.nlm.nih.gov/pubmed/28851275
http://dx.doi.org/10.1186/s12864-017-4083-x
work_keys_str_mv AT dalleryjeanfelix gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT lapalunicolas gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT zampounisantonios gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT pignesandrine gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT luytenisabelle gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT amselemjoelle gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT wittenbergalexanderhj gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT zhoushiguo gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT dequeirozmarisav gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT robinguillaumep gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT augerannie gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT hainautmatthieu gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT henrissatbernard gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT kimkitae gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT leeyonghwan gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT lespinetolivier gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT schwartzdavidc gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT thonmichaelr gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters
AT oconnellrichardj gaplessgenomeassemblyofcolletotrichumhigginsianumrevealschromosomestructureandassociationoftransposableelementswithsecondarymetabolitegeneclusters