Cargando…
Emotion Recognition from EEG Signals Using Multidimensional Information in EMD Domain
This paper introduces a method for feature extraction and emotion recognition based on empirical mode decomposition (EMD). By using EMD, EEG signals are decomposed into Intrinsic Mode Functions (IMFs) automatically. Multidimensional information of IMF is utilized as features, the first difference of...
Autores principales: | Zhuang, Ning, Zeng, Ying, Tong, Li, Zhang, Chi, Zhang, Hanming, Yan, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576397/ https://www.ncbi.nlm.nih.gov/pubmed/28900626 http://dx.doi.org/10.1155/2017/8317357 |
Ejemplares similares
-
Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals
por: Zhuang, Ning, et al.
Publicado: (2018) -
Two-Level Domain Adaptation Neural Network for EEG-Based Emotion Recognition
por: Bao, Guangcheng, et al.
Publicado: (2021) -
Multidimensional Feature in Emotion Recognition Based on Multi-Channel EEG Signals
por: Li, Qi, et al.
Publicado: (2022) -
Selective EEG analysis for emotion recognition using multidimensional directed information criteria
por: Petrantonakis, Panagiotis, et al.
Publicado: (2010) -
EEG Signals Feature Extraction Based on DWT and EMD Combined with Approximate Entropy
por: Ji, Na, et al.
Publicado: (2019)