Cargando…

Enhancing antibacterial effect of sodium hypochlorite by low electric current-assisted sonic agitation

BACKGROUND: This research focused on the effects of low electric current (μE)-assisted sonic agitation of sodium hypochlorite on Enterococcus faecalis infected human root dentin. METHODS: Extracted human canine roots were instrumented, sterilized, and experimentally contaminated with E. faecalis. Af...

Descripción completa

Detalles Bibliográficos
Autores principales: Maden, Murat, Ertuğrul, İhsan Furkan, Orhan, Ekim Onur, Erik, Cevat Emre, Yetiş, Ceylan Çağıl, Tuncer, Yasin, Kahriman, Mesud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576683/
https://www.ncbi.nlm.nih.gov/pubmed/28854274
http://dx.doi.org/10.1371/journal.pone.0183895
Descripción
Sumario:BACKGROUND: This research focused on the effects of low electric current (μE)-assisted sonic agitation of sodium hypochlorite on Enterococcus faecalis infected human root dentin. METHODS: Extracted human canine roots were instrumented, sterilized, and experimentally contaminated with E. faecalis. After incubation for 21 days, the presence of the biofilm was confirmed by scanning electron microscopy (n = 3). Roots were randomly divided into seven groups according to decontamination procedures: G1: no treatment; G2: sterile saline; G3: 5.25% sodium hypochlorite; G4: passive ultrasonic irrigation; G5: EndoActivator (Dentsply Tulsa Dental Specialties, Tulsa, OK) agitation (EA); G6: μE agitation; and G7: μE-assisted sonic agitation. Fixed μE amperage and intensities were applied in G6 and G7. Following microbial sampling, bacterial colonies were counted using the direct plating method. RESULTS: Biofilm was not eradicated in any sample. The μE-assisted sonic agitation of sodium hypochlorite revealed the lowest cfu values (p<0.05), whereas there were no significant differences among the passive ultrasonic irrigation, EndoActivator and μE agitation alone (p>0.05). CONCLUSIONS: Based on available evidence, the following conclusions were drawn: The μE-assisted sonic agitation increased the antibiofilm efficiency of sodium hypochlorite than passive ultrasonic irrigation and EndoActivator. The μE-assisted sonic agitation on 5.25% sodium hypochlorite is not capable to eradicate biofilms at 10mA energy level in 60s.