Cargando…
Extracting replicable associations across multiple studies: Empirical Bayes algorithms for controlling the false discovery rate
In almost every field in genomics, large-scale biomedical datasets are used to report associations. Extracting associations that recur across multiple studies while controlling the false discovery rate is a fundamental challenge. Here, we propose a new method to allow joint analysis of multiple stud...
Autores principales: | Amar, David, Shamir, Ron, Yekutieli, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576761/ https://www.ncbi.nlm.nih.gov/pubmed/28821015 http://dx.doi.org/10.1371/journal.pcbi.1005700 |
Ejemplares similares
-
Empirical Bayes method for reducing false discovery rates of correlation matrices with block diagonal structure
por: Pacini, Clare, et al.
Publicado: (2017) -
Simultaneous inferences based on empirical Bayes methods and false discovery rates ineQTL data analysis
por: Chakraborty, Arindom, et al.
Publicado: (2013) -
Empirical Bayes estimation of posterior probabilities of enrichment: A comparative study of five estimators of the local false discovery rate
por: Yang, Zhenyu, et al.
Publicado: (2013) -
DOMINO: a network‐based active module identification algorithm with reduced rate of false calls
por: Levi, Hagai, et al.
Publicado: (2021) -
A hierarchical Bayesian model for flexible module discovery in three-way time-series data
por: Amar, David, et al.
Publicado: (2015)